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Abstract—A number of different approaches have been proposed to predict elemental component formulas (or molecular formulas) of

molecular ions in low and medium resolution mass spectra. Most of them rely on isotope patterns, enumerate all possible formulas for

an ion, and exclude certain formulas violating chemical constraints. However, these methods cannot be well generalized to the

component prediction of fragment ions in tandem mass spectra. In this paper, a new method, FFP (Fragment ion Formula Prediction),

is presented to predict elemental component formulas of fragment ions. In the FFP method, the prediction of the best formulas is

converted into the minimization of the distance between theoretical and observed isotope patterns. And, then, a novel local search

model is proposed to generate a set of candidate formulas efficiently. After the search, FFP applies a new multiconstraint filtering to

exclude as many invalid and improbable formulas as possible. FFP is experimentally compared with the previous enumeration

methods, and shown to outperform them significantly. The results of this paper can help to improve the reliability of de novo in the

identification of peptide sequences.

Index Terms—Isotope patterns, peptide sequencing, tandem mass spectra.
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1 INTRODUCTION

TANDEM mass spectrometry (MS/MS) is an essential and
reliable tool for biologists to identify peptide and

protein sequences. Many approaches have been designed
for peptide sequencing [1], [2], [3], [4], [5], [6], [7]. One
important class of these approaches is de novo sequencing,
which directly derives a (partial) sequence from experi-
mental spectrum [4], [5], [6], [7]. Due to the measurement
errors in medium resolution spectrometry, a massive
number of candidates will be produced, resulting in
identification confusion.

The isotope patterns of ions obtained in tandem
spectrum can be used toward resolving this confusion. In
spectrum, a peak corresponds to an ion with an elemental
component formula (i.e., molecular formula). As it will be
shown later, the presented isotope patterns can help to
accurately predict the elemental component formulas of
ions which, in turn, can help to improve the reliability of de
novo method. In this paper, we focus on predicting ions’
elemental component formulas from isotope patterns.

Several methods and programs, e.g., [8], [9], [10], [11],
[12], [13], [14], [15], [16], [17], have been developed to

predict the elemental component formulas of molecular
ions using isotope patterns. In simple cases, the maximal
and minimal numbers of each element are estimated by the
intensities of the isotope peaks. Then, constraints of rings
and double bonds are used to rule out certain improbable
formulas [8], [9], [10], [11]. While, in more sophisticated
cases [12], [13], [14], [15], [16], [17], the most possible
formulas are predicted by comparing the theoretical isotope
patterns with the experimental ones. More specifically,
these methods deal with molecular ions containing ele-
ments C, H, N, O, S, Si, O, Cl, B, Br, and so on. They usually
include three processes: 1) candidate generation, which
exhaustively enumerates all possible elemental component
formulas corresponding to a given mass and tolerant mass
error, 2) filtering, which excludes formulas violating
chemical constraints, and 3) matching, which compares the
calculated theoretical isotope pattern of each remaining
formula with the observed one. The best match is regarded
as the most probable formulas.

These methods [12], [13], [14], [15], [16], [17] are capable
of providing adequate solutions in some cases. However,
they cannot be well generalized to the prediction of
component formulas of peptide fragment ions for the
following reasons. First, the fragment ions in MS/MS
spectra are more complex than molecular ions (e.g.,
fragment ions have no general rings and double-bands
constraints any more). Second, the number of possible
formulas increases exponentially with the ions’ masses. Due
to the difficulty in differentiating the massive number of
competing formulas, the reliability of identification and
prediction will dramatically decrease. Furthermore, the
computing time needed for the exhaustive enumeration and
comparison of elemental component formulas will also
become prohibitorily high. Therefore, these methods are not

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 2, NO. 3, JULY-SEPTEMBER 2005 217

. J. Zhang, W. Gao, J. Cai, and S. He are with the Institute of Computing
Technology, Chinese Academy of Sciences, JDL, Room 701, Power Creative
A, No. 1, Shangdi East Road, Haidian District, Beijing, 100080, P.R.
China. E-mail: {jfzhang, wgao, jjcai, smhe}@jdl.ac.cn.

. R. Zeng is with the Institute of Biochemistry and Cell Biology, Shanghai
Institutes for Biological Science, Chinese Academy of Sciences, 320 Yue
Yang Road, Shanghai, 2,00031, P.R. China. E-mail: zr@sibs.ac.cn.

. R. Chen is with the Institute of Biophysics, Chinese Academy of Sciences,
15 Datun Road, Chaoyang District, Beijing, 100101, P.R. China.
E-mail: crs@ict.ac.cn.

Manuscript received 8 Sept. 2004; revised 4 Dec. 2004; accepted 13 Dec. 2004;
published online 31 Aug. 2005.
For information on obtaining reprints of this article, please send e-mail to:
tcbb@computer.org, and reference IEEECS Log Number TCBB-0139-0904.

1545-5963/05/$20.00 � 2005 IEEE Published by the IEEE CS, CI, and EMB Societies & the ACM



suitable for a large mass range. Finally, some previous
methods require that the intensity ratios of isotope peaks be
very accurate to guarantee the reliability of the prediction
[16], [17]. However, in real experiments, the peak intensities
will be modified after the peak centroiding process, hence
the intensity ratio may not be accurate enough.

A new method, called FFP (Fragment ion Formula
Prediction), is proposed in this paper. FFP is specifically
designed for predicting elemental component formulas of
peptide fragment ions. Instead of the expensive and
exhaustive enumeration of all possible formulas, FFP first
converts the prediction of the best formulas to the
minimization of “errors.” Then, it generates a “seed” or a
good starting point using an efficient quadratic program-
ming (QP) technique, and searches the best candidates in
the neighborhood of the starting point. We call this
generate-and-search method “local search.” With the local
search, FFP is able to efficiently provide more accurate
prediction results in medium and large mass ranges.
However, due to the errors in the intensities of isotope
peaks, the local search may still end up with many formulas
invalid in the real world. Then, a novel multiconstraint
filtering method is applied to eliminate those impossible
candidates and adapt to the existing intensity accuracies. To
do this, we have studied the influence of the elemental
composition on the isotope intensities of fragment ions from
the SWISS-PROT peptides, and obtained a set of theoretical
mean mass-dependent and mass-independent isotope
patterns. These mean isotope patterns are deployed to filter
invalid and improbable formulas whose isotope patterns
are far from the mean value. Combining the mean isotope
patterns with the chemical constraint filtering, FFP can
accurately predict the true formulas with a high reliability.

Experiments have been conducted to compare the
performance of FFP with other two methods, namely,
MS_Enumerate and AC, on a set of Q-TOF MS/MS data.
MS_Enumerate, a baseline method, predicts possible for-
mulas without using isotopic information. On the other
hand, AC, proposed by Do Lago [17], is one of the most
advanced methods using isotopic information. The perfor-
mance of the predictions is evaluated with a single match
score and a cumulative match score. The experimental
results show that in the low mass range of (0~300u), FFP
can achieve very high single and cumulative match scores,
which are much better than those of the other two methods.
In the medium and high mass ranges of (300~800u) and
(800~2,000u), FFP still significantly outperforms the other
two methods in the cumulative match score. In addition, the
computing time that FFP needs is also much less than the
previous methods need.

The remainder of this paper is organized as follows: In
Sections 2 and 3, some background and materials of FFP are
described, respectively. In Section 4, we formulate the
problem, followed by a description of the new local search
model and multiconstraint filtering. Section 5 provides
experimental evaluation and comparison of FFP with
previous approaches on several MS/MS spectra. Finally,
discussions and conclusions occupy Sections 6 and 7,
respectively.

2 BACKGROUND

In this section, we introduce some basic background of
peptide fragment ions and isotope patterns in tandem
spectra for the purpose of presenting our work.

2.1 Peptide Fragment Ions in MS/MS Spectra

By collision-induced dissociation (CID), peptides are
fragmented and ionized, and the fragment ions are
measured by a mass spectrometer for the mass/charge
ratio (m/z). The fragment ion is classified as a, b, or c if the
charge is retained on the N-terminal, and x, y, or z if the
charge is retained on the C-terminal [18], [19]. An
immonium ion is an internal fragment with only one single
side chain, formed by a combination of the a-type and
y-type cleavage [20], [21]. In low energy CID, the pre-
dominantly generated ions are a, b, and y types. In addition,
ions with a lost ammonia (-17u, denoted as a�, b�, and y�)
and a lost water (-18u, denoted a�, b�, and y�) are observed
in spectra [22].

For different types of ions, the ions’ masses can be
calculated from their primary amino acid sequences. Let A
be an amino acid with molecular mass mðAÞ. A peptide
P ¼ A1; . . . ; An, is a sequence of amino acids with
mðP Þ ¼

P
1�i�n mðAiÞ, and a partial peptide P 0 is a sub-

string Ai . . .Aj of P with mass mðP 0Þ ¼
P

i�t�j mðAtÞ. Then,
a fragment ion of a partial peptide P 0 can be characterized
by a modification of P 0 with mass mðP 0Þ þ � [23]. For
example, a y-ion of the partial peptide P 0 is mðP 0Þ þ 19.
Table 1 summarizes the ion types and formulas for the ion
mass calculation that we use in this paper.

2.2 Isotope Patterns

Isotopes are elements that contain the same number of
protons and electrons but differ in the number of neutrons
in nucleus. As we know, the elements of H, C, N, O, and S
have different stable isotope distributions (i.e., isotope
patterns) in nature [24]. Most proteins are composed of
the above five elements and, thereby, have relatively stable
isotope patterns. Two ions have different isotope patterns if
they have different elemental component formulas. Hence,
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TABLE 1
Ion Types and Formulas for Ion Mass Calculation

[N] is the mass of N-terminal group, [N] = 1; [C] is the mass of C-terminal

group, [C] = 17; [M] is the mass of the partial peptide, ½M� ¼
P

i�t�j

mðAtÞ; [A] is the mass of the neutral amino acid residuemass, [A] = m(A);

[CO] = 28, ½H2O� = 18, ½NH3� = 17.



the component formula of an ion can be derived from the
presented isotope pattern in spectrum, and the ion can be
identified reliably.

In mass spectrometry, if the selection window is set to
transmit roughly 5u precursors in width, the entire group of
isotopes of precursors will be fragmented. Therefore, the
isotopes of fragment ions will be presented in tandem
spectrum and, at the same time, the intensities of an ion’s
isotopes represent the isotope pattern of the ion. In this
paper, it is shown that these isotope patterns can be used to
predict the component formulas of ions accurately.

3 MATERIALS

Our experimental data is from Dr. R. Johnson, including
60 Q-TOF spectra from tryptic digestion peptides, which
includes 46 peptides without PTM (posttranslational
modification) and 14 spectra of peptides with M-oxidation
or C-carbamidomethylated.

A computational method is employed to investigate the
isotopic information contained in the experimental spectra
and it is observed that the relative peak heights of isotope
peaks are approximately coincident with the expected
isotope patterns of ions (see Section 4.1 for more details).
As an example, one spectrum of the peptide VLDALDSIK is
shown in Fig. 1. Specifically, Fig. 1a shows the spectrum in
which the major peaks corresponding to the y, b, or a-type
ions are labeled and Fig. 1b shows the close-up view of

isotopic resolution of some ions and peaks. From the close-
up view, we can observe that the different relative peak
heights indicate different ions’ isotope patterns which
enable the prediction of component formulas of ions.

4 METHOD

In this section, a new method, FFP, is presented to predict
elemental component formulas of ions based on the isotope
patterns presented in experimental tandem spectra. This
solution has three new contributions: a key concept of
Isotope Pattern Vector (IPV), a “local search” model, and a
multiconstraint filtering process.

We first introduce IPV, and define the match score
between a formula and the experimental data in Section 4.1.
The best formulas will have a minimal match score (or
“errors”), which reformulates the problem into a minimiza-
tion problem. Then, in Section 4.2, a “local search” model is
described to find the match with the minimal score. By
transforming the match score into a quadratic function of
atom’s numbers, FFP computes an optimal formula XR in
real domain with a quadratic programming (QP) routine.
For example, for the ion with mass = 646.4050 in the
spectrum of peptide VLDALDSIK (see Section 3), the
computed XR is C28:73H40:22N7:80O9:49S0:00 (while the true
formula is C28H52N7O10S0). Since the formula is expressed
in real numbers, it cannot be a valid component formula.
We regard XR as a “seed” and then search the integral
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Fig. 1. MS/MS spectrum of the peptide VLDALDSIK (Precursor ion 973.557 u). (a) Major peaks corresponding to the y, b, or a-type ions have been

labeled. (b) The close-up view of isotopic resolution of a2, b2, y4, y7, and y9þþ-ions and peaks.



candidates (such as C29H66N8O9S0, C28H52N7O10S0, and
C29H10N8O9S1) locally in the neighborhood of the seed.
Finally, in Section 4.3, a multiconstraint filtering is applied
to rule out invalid formulas (such as C29H10N8O9S1, which
violates chemical constraints) and improbable formulas
(such as C29H66N8O9S0, which do not match the experi-
mental isotope pattern).

4.1 Isotope Pattern Vector (IPV)

Suppose that the mass of a monoisotopic (partial) peptide P
is M, and its first and second isotopes (i.e., with one and
two additional neutrons) are P1 and P2, respectively. We
define the isotope pattern vector (denoted as IPV) of P as
T ¼ ðM;T1; T2Þ, where T1 and T2 are the relative abundance
values of P1 and P2 with respect to P , respectively.
Furthermore, we define eIPV as experimental (or observed)
IPV if M, T1, and T2 are obtained from spectrum, and tIPV
as theoretical IPV if M, T1, and T2 are calculated from a
given elemental component formula.

An ion peak in mass spectrum is characterized in terms
of (m/z, intensity), where m/z is the value of mass to charge
ratio and intensity is the height of the peak. For convenience
purpose, we normalize z ¼ 1, and use the value of mass to
refer to m/z in the rest of this paper.

To calculate the value of eIPV for isotope peaks of an ion,
we consider a group of ion peaks (p1, p2, p3) with (m/z,
intensity) pairs of (Me1, Ie1), (Me2, Ie2), and (Me3, Ie3) in a
tandem spectrum. Here, Me2 and Me3 are approximately
equal to Me1 þ 1 and Me1 þ 2, respectively. Then eIPV can
be obtained by:

eIPV ¼ ðMe1; I1; I2Þ ¼ ðMe1; Ie2=Ie1; Ie3=Ie1Þ: ð1Þ

To compute the tIPV for the elemental component formula
of a (partial) peptide, we use the natural isotope distributions
of elements C, H, N, O, and S [24] and assume that each
isotope of an atom in the (partial) peptide appears indepen-
dently. Considering a (partial) peptide P with monoisotopic
mass M and component formula Cn1Hn2Nn3On4Sn5, M is

denoted as M ¼ V �X, where V ¼ ð12; 1; 14; 16; 32Þ is the
mass vector of the five elements and X ¼ ðn1; n2; n3; n4; n5ÞT
is the number vector of the five elements in the formula. In
particular, for carbon element, each carbon atom appears
randomlyas either 12Cwithprobability q ¼ 0:9889or 13Cwith
probability p ¼ 0:0111 [24]. Thus, the monoisotopic P

appearswith probability qn1 and its first and second isotopes,
P1 and P2, appear with probabilities n1

1

� �
pqn1�1 and n1

2

� �
p2qn1�2, respectively. In other words, the relative abundance
values of P1 and P2 with respect to P are T1 ¼ n1qC and
T2 ¼ 1

2T
2
1 � 1

2n1q
2
C , where qC ¼ p=q. After considering all

elements of C, H, N, O, and S, tIPV ¼ ðM;T1; T2Þ can be
obtained as follows:

M ¼ V �X; ð2Þ
T1 ¼ n1qC þ n2qH þ n3qN þ n4qO1 þ n5qS1; ð3Þ

T2 ¼ n4qO2 þ n5qS2 þ
1

2
T 2
1

� 1

2
ðn1q

2
C þ n2q

2
H þ n3q

2
N þ n4q

2
O1 þ n5q

2
S1Þ; ð4Þ

where qC , qH , and qN are the relative abundance values of
13C to 12C, D to H, and 15N to 14N, and qO1; qO2ðqS1; qS2) are
the ratio of 17O to 16O, 18O to 16O (33S to 32S, 34S to 32S),
respectively.

Consider a component formula Cn1Hn2Nn3On4Sn5 with
tIPV ¼ ðM;T1; T2Þ (denoted as T ) and a group of observed
ion peaks (p1, p2, p3) with eIPV ¼ ðMe1; I1; I2Þ (denoted as
I). We define the match score between the formula and the
observed peaks as the Euclidian distance E of T and I as

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2m þ �21 þ �22

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM �Me1Þ2 þ ðT1 � I1Þ2 þ ðT2 � I2Þ2

q
:

ð5Þ

As an example, Table 2 simply illustrates some isotope
patterns of peptide VLDALDSIK (see Section 3), which
includes (m/z, intensity) pairs of the major ion peaks, eIPV,
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TABLE 2
Examples of Isotope Peaks in a Spectrum of the Peptide VLDALDSIK

a The observed mass value corresponding to the peak is calculated by mass ¼ z�m=z� ðz� 1Þ �massðHÞ ¼ 487:2959� 2� 1:00782 ¼ 973:58398.



tIPV and the match score E between the isotope peaks and
its component formulas. Observe that the match scores are
very small indicating the consistency between the experi-
mental isotope patterns and the expected ones. Hence, the
component formulas of the ions can be predicted with a
high reliability by comparing the experimental patterns
with the theoretical patterns.

4.2 Local Search Model

For candidate generation, most previous work exhaustively
enumerates all possible integral component formulas, result-
ing in a high computational complexity and low prediction
reliability. To overcome these weaknesses, we introduce a
local search model in the following sections. Specifically, we
convert the prediction of the best formulas to the minimiza-
tion of the match between the theoretical and observed
isotope patterns. First, by expressing the match score with a
quadratic function of elements’ numbers, an optimal formula
XR can be computed with a QP technique in a continuous
space. The only problem is that XR is expressed in real
numbers (such as C28:73H40:22N7:80O9:49S0:0000). Then, the true
integral formulas (such as C28H52N7O10S0) is searched in a
discrete space aroundXR.

4.2.1 Predicting the Initial Formula with Quadratic

Optimization

In this section, the prediction of ions component formulas is
transformed into a quadratic optimization problem. By
introducing formulas (2), (3), (4), and (5), there are

�m ¼ n1 � 12þ n2 � 1þ n3 � 14þ n4 � 16þ n5 � 32�Me1; ð6Þ
�1 ¼ n1 � qC þ n2 � qH þ n3 � qN þ n4 � qO1 þ n5 � qS1 � I1; ð7Þ
�2 ¼ n4 � qO2 þ n5 � qS2

� 1

2
ðn1 � q2C þ n2 � q2H þ n3 � q2N þ n4 � q2O1 þ n5 � q2S1Þ

þ ðn1 � qC þ n2 � qH þ n3 � qN þ n4 � qO1 þ n5 � qS1Þ

� I1 �
1

2
I21 � I2 þ

1

2
�21: ð8Þ

We characterize �m�1�2½ �T¼ AX þB by omitting the residue
1
2 �

2
1 in the formula for �2; hence, E

2 can be transformed into
a quadratic function of elements’ numbers, given as follows:

QðXÞ ¼ E2 ¼ �m�1�2½ �
�m
�1
�2

2
4

3
5 ¼ XTATAX þ 2BTAX þBTB;

ð9Þ

where X ¼ ½n1; n2; n3; n4; n5�T is a vector representing the
elements’ numbers of a component formula, and A and B

are constant matrixes which can be derived (not shown).
Moreover, to make elemental component formulas

chemically meaningful, several constraints for elements
are set as follows:

1. Themass calculated from the formula must be within
the range of ½Me1 � �;Me1 þ �� with respect to the
maximal tolerant m/z error of �, i.e., jVX �Me1j < �.

2. The maximal number of a given element is the
integer part of the m/z divided by the mass of the
lowest weight isotope.

3. The number of C is less than the number of H, and
the numbers of O and N are less than the number of
C, etc. These constraints are implicitly derived from
the molecular formulas of amino acids and the
components of the main ion-types.

4. The sum of H and N in a one-charged ion is odd. The
reason is that an unsaturated chemical chain exists if
the ion is singly charged. In addition, H and N have
odd valences, while C, O, and S have even valences.

Finally, by converting these constraints to linear inequal-
ities denoted as DX � G, the prediction of component
formula of a (partial) peptide ion can be transformed into a
minimization of match score. The minimization problem
can be solved by a standard quadratic programming, which
is formulated as follows:

minimize E ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
QðXÞ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XTATAX þ 2BTAX þBTB

p

Subject to DX � G:

ð10Þ

The optimal XR, which is associated to the minimal
value of E, can be computed by solving (10) in the real
domain. The true formula, on the other hand, must be
expressed in the integral domain, and would be near XR

since it should have a small E. In the next section, we will
discuss the method to find such a formula.

4.2.2 Searching the True Integral Formulas

To find the true formula, we treat XR as a starting point,
and then locally search the integral candidates in the
neighborhood of XR, which is a discrete space. More
specifically, all integral formulas within a distance d from
XR are scored. The scale of d determines the number of
candidate formulas. In experiment, the value of d is adapted
by the mass range and the measured mass error of the ions.
For example, in the medium mass range of (0~800u), the
value of d can be set to 3. In the large mass range of
(800~2,000u), d can be set to 3 if the measured mass error is
less than 50ppm, or 5 if the mass error is larger than 50ppm.
We use the default value of 5 in this paper. In this way,
without enumerating all possible formulas, FFP can predict
the elemental component formulas of ions within a large
mass range while simultaneously ensuring a high reliability
and efficiency.

As it will be mentioned in Section 5, the advantage of
local search model becomes more evident as the ions’
masses increase. This is because the exhaustive enumera-
tion method inevitably generates a large number of noise
formulas which are difficult to be filtered; while local search
can ensure more accurate prediction by reducing the search
space. Furthermore, the computing time of local search is
constant with respect to the ion’s mass while the time of the
exhaustive enumeration increases exponentially.

4.3 Multiconstraint Filtering

After local search, a number of potential candidate formulas
may still be generated. To improve the accuracy of the
prediction, one needs to discard as many invalid and
improbable formulas as possible. In FFP, we achieve this
goal bymulticonstraint filteringwhich uses themean isotope
patterns, the chemical constraints, and cross-validation. To
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the best of our knowledge, this is the first time that the mean
isotope patterns and cross-validation are used to exclude
those inappropriate formulas in prediction.

To find the mean isotope patterns of fragmental ions, we
calculate isotopic distributions and standard deviations of
all peptides to reveal the relationship among the three
components (M, T1, T2) of tIPV. Specifically, we first
compute peptides through a theoretical enzymatic cleavage
of 10,000 proteins contained in the release 44.2 of SWISS-
PROT. Then, we select peptides in the mass range of
(60~3000u), which corresponds to the standard domain of
Q-TOF MS/MS experiments, resulting in a list of 1.68 mil-
lion different formulas. It is noted that the element sulfur
has an abundant isotope þ2S (frequency of 0.04210, 20 times
more than the same isotope for the oxygen), but most
peptides rarely contain more than five sulfurs. Hence, we
classify the above 1.68 million formulas into six categories:
S0, S1, S2, S3, S4, and S5þ corresponding to the partial
peptides containing 0, 1, 2, 3, 4, and 5 or more sulfurs,
respectively. The statistics of T1, T2, and M according to the
six categories are collected and shown in the following
sections.

4.3.1 Mass-Dependent Mean Isotope Patterns

The mass-dependent mean isotope patterns of category S0

within interval � ¼ 1u is depicted in Fig. 2. Specifically, a
wide range distribution within (60~3000u) is shown in
Fig. 2a, which indicates that T1 is linearly dependent on M,
while T2 quadratically increases with M. The narrow range
distribution within (0~800u) is shown in the upper left
small figure. It shows that the oscillation of T2 is tiny (the
amplitude is less than 0.03) and, hence, within the narrow
range, the mean of T2 can be used to discard random
formulas whose T2 is out of the oscillations. The mean of T1

can be used in a similar way. For other five categories (i.e.,
S1, S2, S3, S4, and S5þ), T1 and T2 have similarly linear and
quadratic distributions as in S0. For simplicity, only the
example for S2 is illustrated in Fig. 2b.

The mean and standard deviations of T1 within interval
� ¼ 1u for each category are calculated and fitted by
polynomial curves. The detailed processes are depicted in
Appendix A. From the polynomial fitting, it is observed that
the mean and standard deviations of T1 of the other five

categories are similar to that of S0, while in the polynomial
expression, the power coefficients of the mean T2 of
different categories are very different. This is because the
element S has a more abundant isotope þ2S. Hence, we can
use the mean of T2 to filter those improbable formulas in
which the containment of sulfur does not match the
experimental data well. We illustrate the mean curves of
T2 of different categories in Fig. 3.

To conclude, the distributions (i.e., the mean and
standard deviations) of T1 and T2 can be applied to discard
not only invalid formulas, but also improbable formulas
with the same mass while from different categories.

4.3.2 Mass-Independent Mean Isotope Patterns

Besides the mass-dependent mean isotope patterns, the
mass-independent relationship between T1 and T2 can also
be statistically calculated, which is shown in Fig. 4. We
observe that 1) T2 increases quadratically with T1 in all six
categories, and 2) points (T1, T2) calculated from different
categories are located in different distribution bands. For
example, within the narrow range [(0, 0.5), (0, 0.4)], points
(T1, T2) can be clearly distinguished, as illustrated in Fig. 4b.
In other words, the formulas from different categories can
be easily distinguished by the relationship of T1 and T2. The
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Fig. 2. Distributions of T1, T2 are shown here as a function of the monoisotopic ion’s mass. Shaded areas denote the range between the minimal and

maximal T1, T2 of all possible formulas. The curves represent the mean and standard deviations, respectively.

Fig. 3. The mass-dependent mean of T2 of different categories. (a) and

(b) depict the curves in wide and narrow ranges, respectively.



derivation of the mean and standard deviations of T2 with
respect to T1 is depicted in Appendix B.

While the mass-dependent mean isotope patterns dis-
cussed earlier can constrain T1 and T2 of a valid formula
according to the mass, the mass-independent mean isotope
patterns constrain the relationship of T1 and T2 of a valid
formula. Furthermore, the mean isotope patterns of (T1, T2)
can be used to filter those improbable candidates by
distinguishing formulas from different categories, similar
to the case of mass-dependent mean isotope patterns.

It should be mentioned that there have been a couple of
previous works for calculating the mean isotope patterns
[25], [26], [27], [28]. However, they focus on isotope patterns
of peptides under certain criteria, which are completely
different from the concept of IPV proposed in this paper.
Hence, these results cannot be used for fragment ions.

4.3.3 Cross-Validation

Finally, cross-validation is applied in the multiconstraint
filtering. In particular, the b-series ions of a partial peptide,
including b, a, b�, a�, b�, a�-ions (withmass difference of 28, 17,
18, see Table 1), are homologous. They share the same
primary sequences [23] and, consequently, share similar
isotope patterns. The same is true for the y-series ions. FFP
regards two eIPVsof I1¼ ðMe1; I11; I12Þand I2 ¼ ðMe2; I21; I22Þ
ashomologous if thedifference betweenMe1 andMe2 is 28, 17,
or 18, and (I11, I12) is close to (I21, I22). Then, FFP uses the
homology of eIPVs to cross-validate the predictions. For
example, consider I1¼ðMe1; I11; I12Þ and I2¼ðMe1 � 28; I21;
I22Þ. If there exits a candidateCn1Hn2Nn3On4Sn5 predicted for
I1 while formulaCn1�1Hn2Nn3On4�1Sn5 does not appear at the
candidate list of I2, then FFP regards Cn1Hn2Nn3On4Sn5 as a
random result and discards it.

5 EXPERIMENTAL INVESTIGATIONS

In this section, the performance of FFP is evaluated via a set
of Q-TOF MS/MS data. We first introduce data preproces-
sing in Section 5.1, and performance metrics in Section 5.2.

Then, the performance of FFP is demonstrated and
compared with other two previously proposed methods,
MS_Enumerate, and AC (we reimplement AC according to
the algorithm presented in [17]). In Section 5.3, the
experimental results show that FFP outperform these two
methods significantly. Finally, in Section 5.4 the efficiency
of the two key techniques, the local search model and multi-
constraint filtering in FFP is demonstrated.

5.1 Data Preprocessing

For a givenMS/MS spectrum, FFP first searches all potential
isotope peaks. In order to predict the elemental component
formulas from eIPVs, theremust be at least one ionwith three
isotope peaks in the spectrum. We examine the potential
isotope peaks in a spectrum and discard spectrum that
contains no ions with three isotope peaks. After this initial
sorting, the remaining data contain 50 spectra, which include
40spectraofpeptideswithoutPTMand10spectraofpeptides
with M-oxidation or C-carbamidomethylated.

To search potential groups of isotope peaks and compute
the eIPVs from a spectrum, we first set some thresholds and
discard small peaks (e.g., noise) below the thresholds. For the
highmass (> 500u), a threshold of 4 percent in relative height
of themonoisotopic peakof an ion is chosen,while for the low
mass (� 500u), a threshold is set to 2 percent. Then, FFP uses
the mass-dependent mean isotope patterns (which are also
used as multiconstraint filtering as in Section 4.3) to
determine whether a group of peaks is a group of isotope
peaks of one ion. More specifically, if an observed eIPV of
I ¼ ðMe1; I1; I2Þ corresponds to a group of peaks (p1; p2; p3),
and I1 is larger than ðmean1ðkÞ þ plus1ðkÞ þ �Þ or less than
ðmean1ðkÞ-minus1ðkÞ-�Þ (see Appendix A and Appendix B),
for k ¼ 0 � 5, FFP regards (p1; p2; p3) as noise or overlapping
signals, anddiscards it.Here, � represents the tolerant error of
relative intensities in spectrum, set by the users. The similar
procedure is also applied in I2.

After searching potential isotope peak groups, there are
906 groups (i.e., 906 ions) selected from the 50 spectra in
total. In these 906 groups, there are 726 groups whose true
formulas can be identified from the known peptides’
sequences while 180 groups are unknown ions. The
performance of FFP and other two algorithms, MS_Enuma-
rate and AC, are evaluated on these 726 known ions.

5.2 Performance Metrics

For performance metrics, we define a single match score
and a cumulative match score as follows: For each group of
isotope peaks I ¼ ðMe; I1; I2Þ, FFP outputs a prediction
including a list of candidate formulas. The true formula of
each known ion, on the other hand, can be calculated
according to the peptide sequence. Then, we can find the
rank number of the true formula in the rank list (the smaller
the better) of the candidate formulas. For the rank number
k, the single match score (m_score) is defined as the
percentage of true formulas appearing at rank k, and the
cumulative match score (cm_score) is the percentage of true
formulas appearing at or below k.

With the increase of the ions’ masses, the possible
combinations of the candidate formulas will increase
exponentially. Thereby, the reliability of component formula
prediction will decrease. The following section shows the
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Fig. 4. Mass-independent mean isotope patterns are shown here. The
shaded areas denote the range between minimum and maximum values
of (T1, T2) and the curves represent the mean values. (a) and (b) depict
distributions of different categories in the wide and narrow ranges,
respectively.



performances of FFP compared with the other two methods

in four mass ranges (0~300u), (300~500u), (500~800u), and

(800~2,000u).

5.3 Comparing FFP with MS_Enumerate and AC

In this section, we compare the performance of FFP with

that of two previous proposed methods. First, we consider a

baseline MS_Enumerate to validate the efficiency of the

isotope patterns. MS_Enumerate performs component pre-

diction based on mass information but does not consider

isotopic information. Second, isotope patterns are consid-

ered. Although many such methods (e.g., [12], [13], [14],

[15], [16], [17]) have been proposed, it is concluded [17] that

AC quantitatively achieves better results. Hence, we only

compare the performance of FFP with AC in this paper. The

performance of FFP is compared with MS_Enumerate and

AC on the same data sets. The three methods share the same

chemical constraints. We first investigate the predictive

accuracy of FFP, MS_Enumerate, and AC on the 50 spectra.

The experimental results are summarized in Table 3.
We can draw the following three conclusions from

Table 3:

1. FFP predicts the best in (0~300u). For example, the
cm_score of top-1 and top-5 are up to 0.83 and 0.97,
respectively. The reason is that in this range, the
mass errors in spectra, which play a key role in the
formula prediction (see (5) in Section 4.1), are very
small due to the short flight time of ions in
spectrometry. Furthermore, FFP can achieve higher
m_scores in top-1, roughly 14 percent and 60 percent
(derived from the three cm_scores of Top 1 in Table 3,
which are 0.83, 0.69, and 0.22, respectively), than the
other two methods.

2. In (300~500u) and (500~800u), FFP achieves higher
cm_score in top-5 and top-10 than the other two
methods.With increase in ions’ masses, the reliability
of prediction decreases. However, the local search
model and multiconstraint filtering play important
roles in improving the predictive accuracy of FFP. In
these ranges, it is difficult to distinguish the elemental
components of ions only depending on the ions’
masses and chemical constraints and, hence, the
accuracy of MS_Enumerate decreases dramatically.
AC is theworst because of its exhaustive enumeration
and ignorance of the mass errors in experiments.

3. Even in the large mass range of (800~2,000u), which
results in larger mass and intensity errors, FFP can
still make reasonably adequate predictions. For
example, it achieves cm_score of top-20 nearly up to
0.72. At the same time, the prediction of MS_Enu-
merate and AC are much lower (0.13 and 0.19,
respectively).

For detailed comparison, Fig. 5 illustrates the perfor-
mance curves of FFP, MS_Enumerate, and AC in terms of
cm_scores at each rank number. From Fig. 5, it is obvious
that FFP outperforms the other two methods at almost all
ranks. However, in the range of (300~500u), MS_Enumerate
produces a slightly higher cm_scores than FFP at a high rank
of above 16 (see Fig. 5b). This is because either the local
search model or the multiconstraint filtering may occasion-
ally exclude the true formula, while MS_Enumerate includes
all possible candidates.

It is also shown that the accuracy of prediction generated
by all the three methods decreases with the increase of the
ions’ masses. However, the decrease of FFP is much slower
than the other two methods, which means that the
advantage of FFP is more evident as the ions’ masses
increases, making FFP more useful in a wide range of ion
masses.

Next, we compare the performance of FFP with the other
two methods on individual spectrum. From Table 3, we can
derive that, for the 50 spectra data, FFP provides 525 predic-
tions in which the true formula is ranked within the top 5. In
other words, FFP can provide an average of 10.5 (525/50)
predictions ranking the true formulawithin the top 5 for each
spectrum.However,MS_Enumerate andAC produce only 7.0
(347/50)and4.6 (229/50), respectively.As showninSection6,
the more the formulas are predicted correctly, the more the
confidence FFP will provide to the peptide sequences
constructed by de novo.

Furthermore, FFP is evaluated in terms of the single
match score (m_score) for each individual rank and the
detailed performance is depicted in Fig. 6. From Fig. 6a, it is
observed that in (0~300u), the m_score of rank 1 is above
0.83, indicating that the predicted formula in top 1 is highly
credible. In (300~500u), the cm_score of the top 5 is still up to
0.948 (see Fig. 6b), indicating that the top five candidates are
very credible. It will be discussed in Section 6 that the
credible formulas can help de novo to refine peptide
sequencing. It is our future work to improve FFP in the
large mass range.

224 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 2, NO. 3, JULY-SEPTEMBER 2005

TABLE 3
The Predictive Accuracy of FFP, MS_Enumerate, and AC



Finally, FFP is more computationally efficient than the

other two methods. Because of the local search model, the

computing time of FFP is roughly constant with respect to

the ion’s mass. However, the computing time of the

exhaustive enumeration, which is used by MS_Enumerate

and AC, increases exponentially. For example, when

running on the same PC (CPU: Pentium IV, RAM: 256Mb,

OS: Windows), FFP takes 8 seconds to finish all the

computation on the 50 spectra data, while both MS_Enu-

merate and AC need 58 seconds. In the next section, the

reasons for the good performance of FFP will be discussed.

5.4 The Source of Good Performance of FFP

As described in Section 4, the local search model and

multiconstraint filtering are the two novel contributions in

FFP. Here, we investigate the efficiency of these two
techniques. We compare the “Local Search” (see Section 4.2)
with the “Global Enumeration” strategy which enumerates
all possible formulas, and evaluate “Multiconstraint Filter-
ing” by comparing it with “Chemical-constraint Filtering.”
The comparison shows that Local Search is more effective
when ion’s mass is larger than 500u, while the advantage of
Multiconstraint Filtering is prominent in the range of
(0~800u). In addition, the relative contribution of these two
techniques in FFP is also evaluated.

5.4.1 The Efficiency of Local Search

We compare “Local Search” with “Global Enumeration” in
the candidate generation process and keep other processes
(i.e., filtering by Multiconstraint Filtering and matching by (5)
in Section 4.1) intact in the experiments. Fig. 7 depicts the
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Fig. 5. Performance curves of the cm_scores of FFP,MS_Enumerate, and AC. (a), (b), (c), and (d) depict the performances of FFP,MS_Enumerate,

and AC in the mass ranges of (0~300u), (300~500u), (500~800u), and (800~2,000u), respectively.

Fig. 6. Performance of FFP in terms of the single match score. (a), (b), (c), and (d) depict FFP’s performance in the mass ranges of (0~300u),

(300~500u), (500~800u), and (800~2,000u), respectively.



cm_scores of Local Search and Global Enumeration in four
mass ranges.

In Figs. 7a and 7b, the curve of Local Search is virtually
overlapping with that of Global Enumeration, indicating
these two methods have almost equal results in (0~300u)
and (300~500u). The advantage of Local Search is not
prominent because the possible combinational formulas are
relatively few in these ranges, and the Multiconstraint
Filtering process discards most of impossible formulas.
However, in Figs. 7c and 7d the distance between the two
curves is significant, which indicates the efficiency of Local
Search in (500~800u) and (800~2,000u). Local Search
achieves a higher cm_score than Global Enumeration as
much as 2~10 percent at each rank. This is because Global
Enumeration inevitably generates a large number of noisy
formulas difficult to be filtered and discarded, while Local
Search can achieve more accurate prediction by reducing
search space significantly.

5.4.2 The Efficiency of Multiconstraint Filtering

To evaluate the efficiency of “Multiconstraint Filtering”, we
compare it with “Chemical-constraint Filtering.” The Multi-
constraint Filtering includes the chemical constraints
DX � G, the mean isotope patterns, and cross-validation
(see Section 4.3). The other processes (i.e., candidate
generation by Local Search and matching by (5)) are kept
intact as discussed earlier. Fig. 8 depicts the comparative
cm_score curves of Multiconstraint Filtering and Chemical-
constraint Filtering.

From Figs. 8a, 8b, and 8c, it can be observed that
Multiconstraint Filtering achieves significantly higher
cm_scores of a low rank (below 5) than Chemical-constraint
Filtering, indicating that in the small and medium mass
range of (0~800u), Multiconstraint Filtering can filter
impossible formulas more effectively. This can be ascribed
to the small oscillation of T1 and T2 in the mean isotope
patterns. However, for heavy ions (> 800u), the two

cm_score curves are very close (Fig. 8d), which indicates
that the mean isotope patterns are not evident to differ-
entiate the noisy formulas.

5.4.3 Relative Contribution of Local Search and

Multiconstraint Filtering

Here, the Expected Rank No. of the true formulas, which is
calculated from the prediction results, is utilized as the
performance metric to evaluate the relative contribution of
Local Search and Multiconstraint Filtering. For comparison,
the Expected Rank No. predicted by FFP and MS_Enumerate
is also calculated. The results are summarized in Fig. 9.

Fig. 9 shows that in the range of (0~300u), the Expected
Rank No. of the true formulas calculated by Local search and
Multiconstraint Filtering are similar (1.759494 versus
1.50211), which implies that the contributions of these two
techniques are almost same in FFP. In the range of
(300~500u), Multiconstraint is more efficient than Local
search (2.659259 versus 4.133333). However, Local Search
makes more contribution in the ranges of (500~800u) and
(800~2,000u). The figure also shows that due to these two
techniques, FFP can significantly outperform the baseline
method MS_Enumerate as the ion’s mass increases.

6 DISCUSSION

From the experimental results described in Section 5, we
can see that FFP performs very well in predicting elemental
component formulas of fragment ions in Q-TOF spectra.
Furthermore, by predicting the formulas for a series of ions,
FFP provides helpful information to refine the peptide
sequencing by de novo in three ways. First of all, FFP can
distinguish different ions with the same mass. As we know,
for medium resolution MS/MS data, some acid amino
residues are difficult to be differentiated by their mass,
which causes confusion in de novo. For example, the
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Fig. 7. Efficiency of Local Search and Global Enumeration. (a), (b), (c), and (d) depict the performances of Local Search and Global Enumeration in
mass ranges of (0~300u), (300~500u), (500~800u), and (800~2,000u), respectively.



immonium ion of oxidized Met (½C4H9NOS þH�þ) and Phe
(½C8H9N þH�þ) have almost the same mass, 120.0483 and
120.0813, respectively. However, oxidized Met and Phe have
very different tIPVs of (120.0483, 0.05837, 0.04787) and
(120.0831, 0.09480, 0.00398), respectively, and they can be
differentiated by FFP from the eIPVs in spectrum. There-
fore, the component prediction of FFP can refine the
interpretation of individual ion peaks for de novo.

Second, the de novo approach directly derives a (partial)
sequence fromspectrumbycomputing themassmatches, i.e.,
the matches between the masses of amino acids and the
distances of peaks in spectrum. Due to the measurement
errors, there are a massive number of matches between two
peaks and amino acid sequences. Since a peak corresponds to
an ion with a component formula, when the difference of the
two ions’ formulaspredictedbyFFPmatches theaminoacid’s
formula, the constructed sequences by de novo will be more
reliable.

For example, assume that p1, p2, and p3 are three peaks
within a close range in a spectrum, and the mass distances
between p1 and p3, and between p2 and p3 match amino
acids A1 and A2, respectively. Let us further assume that
after FFP predicts the formulas of p1, p2, and p3, the
difference between formulas of p1 and p3 matches the
formula of A1, while the difference between formulas of p2
and p3 does not match the formula of A2. In this case, we
can conclude that the subsequence conducted by p1 and p3
is more reliable than that constructed by p2 and p3.

Here is an example to further illustrate this point. Fig. 10
shows one spectrum of the peptide CCTESLVNR, in which
both the two amino acids “C” are carbamidomethylated,
and Table 4 depicts the predictions for isotope peaks of ions
selected from the spectrum by FFP. From Table 4, we can
observe that FFP predicts formulas for 16 ions with a high
reliability. These predictions support a series of matches of
amino acids. In this way, FFP can provide significant
confidence to the true candidate sequence and, hence, will
improve the reliability of de novo sequencing and reduce the
computing effort of de novo. In the future work, we will
implement FFP in a de novo algorithm, and show its
efficiency in peptide sequencing.

Finally, FFP can predict certain formulas for “unknown”
ions to improve the confidence of a candidate peptide
sequence. For example, consider the fourteenth ion with a
mass of 231.0874 in Table 4. If the main ion types introduced
in Section 2 are employed, the 14th ion is unknown.
However, FFP makes a prediction matching the internal ion
of “TE,” which identifies this ion and improve the
confidence of the sequence “CCTESLVNR.”

7 CONCLUSIONS

In this paper, a novel method, FFP (Fragment ion Formula
Prediction), is proposed to predict component formulas of
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Fig. 8. Efficiency of Multiconstraint Filtering and Chemical-constraint Filtering. (a), (b), (c), and (d) depict the performances of Multiconstraint Filtering
and Chemical-constraint Filtering in mass range of (0~300u), (300~500u), (500~800u), and (800~2,000u), respectively.

Fig. 9. Relative efficiency of four methods measured by Expected
Rank No.



fragment ions based on the isotope patterns in the tandem

spectrum. The main contributions of this paper are

summarized as follows: First, FFP uses a “local search”

model to generate and search candidate formulas. This

ensures that FFP can predict elemental components of ions

within a larger mass range with a low computation

complexity. Second, FFP uses a multiconstraint filtering,

which includes the mean isotope patterns, chemical

constraint filtering and cross-validation, to discard as many

invalid and improbable candidates as possible. In turn,

these filtering can improve the prediction reliability. The

experimental results show that FFP can not only predict

formulas with a higher reliability, but also enjoy a lower

computation complexity than the other methods. Third, FFP

is also shown to help de novo to refine peptide sequencing in

protein identification. In the future work, we will improve

FFP’s performance in the large mass ranges, and implement
FFP in a de novo algorithm to improve its efficiency in
peptide sequencing.

APPENDIX A

FITTING OF MASS-DEPENDENT MEAN ISOTOPE

PATTERNS

As described in Section 4.3, the mean and standard
deviations of T1 within interval � ¼ 1u are calculated
quantitatively for each category, and fitted by polynomial
curves. In category S0, for example, the mean of T1 can be
extrapolated by the linear fit mean1:

mean1 ¼ 0:0005669�M � 0:001243;

and mass-dependent standard deviations are given by

plus1 ¼ 0:000019�M þ 0:006585;

minus1 ¼ 0:000017�M þ 0:006191;

where plus1 and minus1 describing the oscillation of T1,
respectively.

Similarly, distribution of T2 can be represented bymean2,
plus2, and minus2, which are given as follows:

mean2 ¼ 0:0000001663�M2 þ 0:00002253�M

þ 0:0008897;

minus2 ¼ 0:000000009509�M2 þ 0:000001197�M

� 0:0001284;

plus2 ¼ 0:00000001132�M2 þ 0:0000002527�M

þ 0:0001947:
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Fig. 10. MS/MS spectrum of the peptide CCTESLVNR with major peaks
corresponding to y or b-type ions.

TABLE 4
The Prediction of Fragment Ions by FFP from One Spectrum of the Peptide CCTESLVNR

a Double backbone cleavage gives rise to internal fragments. Usually, these are formed by a combination of b type and y type cleavage.



The distributions of the other five categories are also

calculated. It is observed that the mean and standard

deviations of T1 are similar as that of S0, while in polynomial

expression, power coefficients of T2 are different from that of

S0. The mean fit curves of T2 are illustrated in Fig. 3 in

Section 4.3.1. Specifically, we can use polynomialmeanðkÞ ¼
c2ðkÞ �M2 þ c1ðkÞ �M þ c0ðkÞ to describe the mean fit

function of T2 in Sk, for k ¼ 0 � 5. These six categories have

almost the same coefficients of c2ðkÞ and c1ðkÞ, k ¼ 0 � 5, but

different coefficients of c0ðkÞ, which are 0.0008897, 0.04456,

0.09001, 0.1389, 0.1878, and 0.1932, respectively. In other

words, with respect to c0ð0Þ, c0ðkÞ increase as c0ðkÞ ’ c0
ð0Þ þ ð0:0426þ 0:001� kÞ � k; k ¼ 1 � 5, which corresponds

to the fact that sulfur has an abundant isotope þ2S of

frequency of 0.04210.

APPENDIX B

FITTING OF MASS-INDEPENDENT
MEAN ISOTOPE PATTERNS

Similarly, to reveal mass-independent relationship between

T1 and T2, we calculate the mean and standard deviations

fittings of T2 with respect to T1 in category S0, which is

given as follows:

meanðT2Þ ¼ 0:50003� T 2
1 þ 0:04845� T1 � 0:00072;

minusðT2Þ ¼ �0:000581� T 2
1 þ 0:006891� T1 þ 0:000396

plus2ðT2Þ ¼ �0:001357� T 2
1 þ 0:008658� T1 � 0:000146:

For the other five categories, it also can be observed similar

mean and standard deviations as that of S0. In terms of

polynomial meanT2ðkÞ ¼ c2ðkÞ � T 2
1 þ c1ðkÞ � T1 þ c0ðkÞ, for

k ¼ 0 � 5, all curves of mean T2 have similar curvature (i.e.,

c2ðkÞ ’ 0:5), while different coefficients of c0ðkÞ ¼ �0:00072;

0:04295; 0:08679; 0:1300; 0:1734; k ¼ 0 � 4, respectively.
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