
RAPID COMMUNICATIONS IN MASS SPECTROMETRY

Rapid Commun. Mass Spectrom. 2010; 24: 807–814

) DOI: 10.1002/rcm.4448
Published online in Wiley InterScience (www.interscience.wiley.com
Speeding up tandem mass spectrometry based database

searching by peptide and spectrum indexing

You Li1,2y, Hao Chi1,2y, Le-Heng Wang1, Hai-Peng Wang1,2, Yan Fu1, Zuo-Fei Yuan1,2,

Su-Jun Li3, Yan-Sheng Liu3, Rui-Xiang Sun1, Rong Zeng3 and Si-Min He1*
1Key Lab of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
2Graduate University of Chinese Academy of Sciences, Beijing 100049, China
3Research Center for Proteome Analysis, Key Lab of Proteomics, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological

Sciences, Chinese Academy of Sciences, Shanghai 200031, China

Received 11 November 2009; Revised 7 January 2010; Accepted 8 January 2010
*Correspo
Chinese A
E-mail: sm
yThese au
Database searching is the technique of choice for shotgun proteomics, and to date much research

effort has been spent on improving its effectiveness. However, database searching faces a serious

challenge of efficiency, considering the large numbers of mass spectra and the ever fast increase in

peptide databases resulting from genome translations, enzymatic digestions, and post-translational

modifications. In this study, we conducted systematic research on speeding up database search

engines for protein identification and illustrate the key points with the specific design of the pFind

2.1 search engine as a running example. Firstly, by constructing peptide indexes, pFind achieves a

speedup of two to three compared with that without peptide indexes. Secondly, by constructing

indexes for observed precursor and fragment ions, pFind achieves another speedup of two. As a

result, pFind compares very favorably with predominant search engines such as Mascot, SEQUEST

and X!Tandem. Copyright # 2010 John Wiley & Sons, Ltd.
High-throughput protein identification is the basis of proteo-

mics, with the tandem mass spectrometry (MS/MS)-based

shotgun approach as the technique of choice. Among the

various approaches to data analysis, database search engines

have been most reliably and most widely used, such as

Mascot,1 SEQUEST,2 pFind,3–5 X!Tandem,6 OMSSA,7 and

Phenyx.8 While the majority of research efforts have aimed to

improve effectiveness by the design of new scoring and

validating algorithms, database search engines are facing a

serious challenge of efficiency, owing to the following reasons.

Firstly, the size of protein sequence databases is ever

increasing. From IPI.Human.v3.22 to IPI.Human.v3.49, the

count of the protein sequences has increased by nearly a

third. Besides, along with the evolution and even revolution

of genome sequencing technologies, proteogenomic research

hopes to use genome translated protein sequences for protein

identification. As an example, the EST database

(Human.12.06) will be translated into 8,163,883 protein

sequences, over 100 times larger than the human proteome

IPI.Human.v3.49, which has only 74,017 protein sequences.

Secondly, increasing demand for consideration of semi- or

non-specific digestion results in 10 or 100 times more

digested peptides respectively than specific digestion, as

shown in Table 1.

Thirdly, post-translational modifications (PTMs) produce

exponentially more modified peptides. At present over 500
ndence to: S.-M. He, Institute of Computing Technology,
cademy of Sciences, Beijing 100190, China.
he@jdl.ac.cn
thors contributed equally to this work.
types of PTMs are recorded in the Unimod database.9 If we

select ten common variable PTMs and restrict the number of

modification sites in a peptide to a maximum of five, the

number of tryptic peptides of the human proteome will be

expanded over 1000 times, as shown in Table 2.

Although the performance of computing hardware is

improving steadily, it cannot catch up with the expansion

pace of candidate peptides. In the meantime, a mass

spectrometer like the LTQ generates about five tandem

mass spectra per second, or about 400,000 spectra per day,

and the generation speed would surely increase steadily. All

these factors contribute to the serious challenge of efficiency

for protein identification search engines.

Recent years have witnessed various attempts to improve

the identification efficiency. The most noticeable is the

peptide sequence tag approach, pioneered by Mann and

Wilm,10 and followed by GutenTag,11 MultiTag,12 InsPecT,13

ByOnic,14 and Spectral Dictionary.15 However, owing to

the limitations of spectra resolution and accuracy, peptide

sequence length, and charge states, automatic and reliable

extraction of a peptide sequence tag or tags from a tandem

mass spectrum is far more than a trivial task, and hence this

approach is not as widely used as the classical database

search engines.

There have also been several attempts to improve the

design of classical database search engines. For example,

Edwards and Lippert considered the problem of generating

the peptides from protein sequences and matching with

spectra,16 Tang and co-workers intended to use peptide and

b/y ions indexes,17 Yen et al. developed a method to remove
Copyright # 2010 John Wiley & Sons, Ltd.



Table 1. The scale of peptide sequences under tryptic diges-

tion

Database
Yeast

v.20080606 IPI-Humanv.3.49
Swiss-Prot

v.56.2

Proteins 6,717 74,017 398,181
Fully specific
peptides

741,476 7,412,821 34,764,218

Semi-specific
peptides

11,659,540 119,136,531 556,602,826

Non-specific
peptides

120,464,808 1,230,715,950 5,605,491,572

Note: peptide mass: 800–6000Da, peptide length: 4–100 amino acids,
non-specifically digested peptide length: 4–50 amino acids, max
missed cleavage sites: 2.

808 Y. Li et al.
unlikely sequences in the database using peptide proper-

ties,18 Dutta and Chen adopted the nearest neighbor search

to speed up peptide-spectrum matching,19 Roos et al.

proposed to use hardware cache to speed up identification,20

and Park et al. used a peptide index to increase the efficiency

of querying candidate peptides for the mass spectrum.21

However, these sporadic research efforts do not investigate

the entire workflow of search engines, and few practical

systems are accompanied.

In this paper, we systematically investigate all the efficiency-

related steps in the workflow of protein identification: protein

digestion in silico!peptide modification!peptide-precursor

matching! fragment ion-peakmatching, and propose several

key questions. First, why, how and at what level to construct

protein indexes? Being different from Mascot and X!Tandem,

only SEQUEST constructs a peptide index. Second, how to deal

with PTMs, and whether to construct a modified peptide

index? While SEQUEST constructs such an index, Mascot and

X!Tandem do not. Third, how to speed up peptide-spectrum

matching? Two problems are involved: one is to speed up the

mapping of candidate peptides to precursor mass windows,

and the other is to speed up the mapping of theoretical

fragment ions of a candidate peptide to observed peaks of a

tandem mass spectrum. It is worth pointing out that the

peptide-spectrum matching step is the basis of any scoring

algorithm, and significantly affects the efficiency; however,

few studies are known in the field.
Table 2. The number of modified peptides in the IPI-Human

v3.49 database

Max. modification sites Num. modified peptides

0 3,309,085
1 25,197,765
2 133,063,810
3 477,180,661
4 1,361,747,010
5 3,395,725,099
6 7,823,314,004
7 17,606,043,889
8 41,148,061,489
9 99,244,365,518

Note: Ten modifications are specified: Oxidation (M), Phosphoryl-
ation (S, T, Y), Methylation (K, R), di-Methylation (K, R), tri-Meth-
ylation (K) and Acetylation (K).

Copyright # 2010 John Wiley & Sons, Ltd.
With the design of pFind 2.1 as a running example, we

illustrate how to speed up general protein identification

search engines by use of indexing techniques. In the next

section we describe how to construct peptide indexes more

time- and space-efficiently than SEQUEST 2.7 and show a

speedup of two to three times over a scheme without

peptide indexing. In addition, database searching with such

an algorithm compares very favorably with Mascot 2.1.03,

SEQUEST 2.7, and X!Tandem (2008.12.01) on the identifi-

cation speed. We then go on to describe how to index

tandem mass spectra precursors and fragment ions to

achieve another speedup of two. In the Discussion section

we debate the potential for further improving the efficiency

of the first-generation protein identification search engines,

including Mascot, SEQUEST, X!Tandem, and pFind, which

share the common feature of directly mapping peptides to

spectra without extracting any information from the

spectra.
PEPTIDE INDEXING

During the general protein identification process, proteins

are digested in silico into peptides, which are thenmatched to

spectra. However, proteins may produce redundant pep-

tides, which results in redundant peptide-spectrum match-

ing and scoring. For example, redundant peptides make up

more than half in the full tryptic digestion of human

proteome IPI.Human v3.49, as shown in Fig. 1. Profiling

analysis indicates that with a well-designed search engine,

peptide-spectrummatching and scoring takes up a large part

of the total time in database searching (see Table 6). In

addition, the on-line digestion in silico also takes much time,

especially when the spectra are identified in a number of

separate batches; such digestion will have to be repeated.

Therefore, off-line digestion and storing unique peptides in

index files is a promising method to remove the above

redundant operations.

In terms of peptide indexing, the first question to be

answered is what kind of peptides are to be stored, digested

peptides or modified peptides? The peptide index of
Figure 1. The distribution of redundant peptides. The X- axis

stands for the peptide count, and the Y-axis stands for the

number of peptides with each peptide count. For example, the

second column in the histogram means that over 80,000

peptides appear twice.

Rapid Commun. Mass Spectrom. 2010; 24: 807–814

DOI: 10.1002/rcm



MS/MS database searching by peptide and spectrum indexing 809
SEQUEST stores all the peptides with PTMs, which suffers

from twomain shortcomings. Firstly, as indicated by Table 2,

the number of modified peptides is huge, and hence the

index for the modified peptides will take tremendous time to

construct and huge space to store. Secondly, while the set of

protein sequences is relatively stable, the set of PTMs

specified may be variable for even the same set of spectra;

hence the index for the modified peptides has to be

reconstructed whenever the specified set of PTMs changes,

which is harmful to identification efficiency. In addition, the

efficiency of such peptide index construction could be further

improved but few studies have aimed at it.

Consequently, pFind constructs off-line an index for

digested peptides, but generates on-line all the modified

peptides. Profiling analysis shows that such on-line gener-

ation of modified peptides only takes less than 5% of total

identification time with pFind. Hence this approach has no

overhead with the potentially huge space for modified

peptides, and little sacrifice of time efficiency. In addition,

based on the digested peptides index, other database

searching methodologies could easily apply this strategy

to generate modified peptides while avoiding redundancy.

The following important questions are concerning index

structure, construction and querying. In the following

subsection we will talk about the peptide index structure

and construction. Since SEQUEST also constructs a peptide

index while Mascot and X!Tandem do not, we will compare

with SEQUEST in this part. When we talk about the speedup

effect of peptide indexing; we compare with not only

SEQUEST, but mainly with Mascot and X!Tandemwhich are

more time-efficient.

Index structure and construction
pFind adopts an inverted index for digested peptides,

including the peptide dictionary that stores the distinct

peptides and the inverted lists that store the protein IDs that

generate the peptides. The data structures for the dictionary

and the inverted lists are shown in Table 3. Specifically,

pFind uses Position and Length to represent the peptide

sequence, instead of the original sequence like SEQUEST and

Interrogator,17 which decreases the space usage sharply. For

example, the average length of tryptic peptides in IPI-Human

v3.49 is �19, which means storing the original sequence will

occupy�19 bytes for each peptide. With the consideration of

20 standard amino acids, each amino acid could be stored in 5

bits, and a peptide would occupy �12 bytes. However, with

the compact representation, pFind only needs exactly 5 bytes.
Table 3. Data structure of the peptide dictionary and the inverted

Field Type

Peptide dictionary Mass size _t
Position size _t
Length char

InvertedFilePos size _t
Pro_num size _t

Inverted list Pro_1_ID_1 size _t
Pro_1_ID_2 size _t

. . . . . .
Pro_2_ID_1 size _t

. . . . . .

Copyright # 2010 John Wiley & Sons, Ltd.
Furthermore, thememory could be usedmore efficiently and

then the time to construct the peptide index would be

reduced to a certain extent due to the saving of storage space

by such representation.

The construction of the peptide index includes three steps.

Firstly, scan the protein sequences, and digest them in silico

into peptides. Secondly, sort the peptides first by mass and

then by sequence at equal mass; as a result, redundant

peptides will be placed consecutively, and so it is with the

proteins associated with the same peptide. Thirdly, scan

the sorted peptides, remove redundant peptides, store the

distinct peptides into the dictionary, and put the IDs of all the

proteins associated with this peptide into the inverted list, as

shown in Fig. 2.

A serious challenge to the construction of an index is that

the set of all peptides is too large to be sorted at one time in

the memory. Hence a pre-calculation strategy is firstly

designed, which calculates the mass distribution of all the

peptides first. Given the available memory for index

construction, partition the mass range of all the peptides

into mass intervals such that the peptides in one mass

interval could be sorted in memory (see Supplementary

Algorithm 1, Supporting Information).

Because the most time-consuming part is sorting the

peptides by sequence, a novel signature method is proposed,

using a logarithm Gödel code, which maps each distinct

peptide to a distinct floating-point number without any

collisions in practice (see Supplementary Algorithm 2,

Supporting Information). Sorting the peptides by the

signature is five to ten times more efficient than sorting by

the sequence, as shown in Table 4. With the pre-calculation

strategy and Gödel code, the peptide index can be

constructed efficiently in the memory (see Supplementary

Algorithm 3, Supporting Information).

Both the construction time and space usage of peptide

indexing in pFind are tested and compared with SEQUEST.

As is shown in Table 5, pFind is �5 times faster than

SEQUEST under fully tryptic digestion, and �10 times faster

than SEQUEST under semi- and non-specific tryptic diges-

tion, resulting mainly from the following two reasons:

Firstly, benefiting from the pre-calculation strategy, pFind

constructs the index all in the memory while SEQUEST sorts

all peptides in the disk, which is rather slow. The compressed

representation of each peptide enables the algorithm to

handlemore peptides each time, which further speeds up the

index construction. Secondly, pFind sorts peptides by their

signatures, namely the Gödel codes, instead of the sequences
list of pFind

Annotation

Peptide mass
Position of the peptide in protein database

Peptide length
Pointer to the associated proteins in the inverted list file

Number of proteins containing this peptide
The first protein containing the first peptide

The second protein containing the first peptide
. . .

The first protein containing the second peptide
. . .

Rapid Commun. Mass Spectrom. 2010; 24: 807–814

DOI: 10.1002/rcm



Figure 2. The process of constructing the peptide index. (1) Digest protein

sequences into peptides. (2) Sort the peptides first by mass and then by

sequence; as a result, redundant peptides will be placed consecutively. (3)

Remove redundant peptides, store the distinct peptides into the dictionary,

and put the IDs of all the proteins into the inverted list.

810 Y. Li et al.
themselves. On the other hand, even though pFind stores

more information in the peptide index than SEQUEST, such

as missed cleavages and the number of proteins which

generate the peptides, pFind still uses less space than

SEQUEST, as is shown in Table 5, especially under semi-

and non-specific tryptic digestion. The reason is that pFind

compactly represents a peptide sequence by its position and

length, not by the sequence itself. (To speed up reading the

original peptide sequence, pFind constructs a protein index

to represent the FASTA database in a compact style, which is

described in detail and compared with Mascot and

X!Tandem, that also construct protein indexes, in the

Supporting Information.)
Table 4. The effect of Gödel code for speeding up the con-

struction of peptide index (in seconds)

Yeast IPI-Human Swiss-Prot

Sorting the sequence
directly

24 334 1437

Sorting the Gödel
code

4 32 275

The experiments are under fully specific digestion. Sorting the
sequence means, during the index construction, sorting all the
peptides by mass and sequence, while sorting the Gödel code means
sorting all the peptides by mass and Gödel code.

Table 5. Time and space usage of the peptide indexing

Database Cleavage

Time (s) Space (megabytes)

pFind SEQUEST pFind SEQUEST

Yeast Fully specific 4 19 19 21
Semi-specific 41 766 300 1,024
Non-specific 434 3,767 3070 4,403

IPI-Human Fully specific 32 122 104 113
Semi-specific 480 9,420 2,050 4,430
Non-specific 7,883 44,880 19,456 23,552

Swiss-Prot Fully specific 275 653 600 730
Semi-specific 5,268 51,120 11,264 39,936
Non-specific 81,582 407,910 107,520 122,880

Copyright # 2010 John Wiley & Sons, Ltd.
Index query and experiment
Based on the peptide index, the identification workflow is

shown in Fig. 3. Three key steps are involved, namely

candidate peptide generation, peptide-spectrum matching,

and similarity scoring. The next section discusses the latter

two steps. The step of candidate peptide generation is to scan

the peptide dictionary and, for each unique peptide, generate

all of its modified variants as candidates. In order to illustrate

the benefit of peptide indexing, the speed of pFind is

compared with those of Mascot, SEQUEST and X!Tandem.

As indicated before, Mascot only has one workflow, which

uses the protein index but not the peptide index. SEQUEST

has two workflows, with workflow-1 not using any index

and workflow-2 using the peptide index. pFind also has two

workflows, with workflow-1 using the protein index only,

and workflow-2 using both protein and peptide indexes.

Mascot and SEQUEST only adopt the normal one-step

mode of protein identification, which considers all the

modifications and the whole protein database through one

pass of search. pFind and X!Tandem support both the normal

one-stepmode and themulti-step mode.22 In the latter mode,

two sets of modifications A and B are specified for two passes

of search respectively, where A is usually a subset of B. The

first pass considers the whole protein database and the

modification set of A, with a small set of proteins identified.

The second pass considers the smaller set of proteins

identified and the larger modification set of B, with the

identification result as the final output.

The database searching parameters are shown in Supple-

mentary Table S3 (see Supporting Information). The MS/MS

data in Exp.1 are from a previously reported dataset,23 and

the data in Exp.2 were generated by another liquid

chromatography/tandem mass spectrometry (LC/MS/MS)

experiment, analyzing a mixture of human serum proteins.

Specifically, in the multi-step method of pFind and

X!Tandem, phosphorylation is considered only in the second

round of database search, which is performed against amuch

smaller database. In all experiments reported in this the

paper, we used a Dell server, which has Intel Xeon (R) 5100 @

1.60GHz, 4CPU and dual core with 8GB memory. All the

experiments mentioned here were done with this computer.
Rapid Commun. Mass Spectrom. 2010; 24: 807–814

DOI: 10.1002/rcm



Figure 3. In the workflow of pFind, three key steps are involved. Firstly, scan the

peptide index and for each peptide, generate candidate modified peptides;

secondly, find all spectra whose masses fall in the tolerance window of one

peptide; thirdly, score each peptide-spectrum match.

Table 6. Time usage distribution and scoring number of pFind in Exp.2

Time usage pFind without peptide index pFind with peptide index

Candidate peptide generation 22min 15min
Peptide-spectrum matching 27min 17min
Similarity scoring 1768min 815min
Number of scoring 12,415,099,229 6,184,080,825

MS/MS database searching by peptide and spectrum indexing 811
As shown in Table 7, pFind, using the peptide index,

performs better than Mascot and X!Tandem in both modes.

For example, in the multi-step mode and Exp.2, pFind is

more than five times faster than X!Tandem. Since pFind and

X!Tandem use similar multi-step search strategies and

scoring models, it is reasonable to conclude that the well-

designed peptide index is indeed beneficial in database

searching. In addition, although pFind adopts a more

complicated scoring model3 than SEQUSET and generates

modified peptides on-line, it is still more than ten times faster

than SEQUEST, which further confirms the benefit of the

peptide indexing strategy proposed in this section. Besides,

the identification results are shown in Supplementary Tables

S4 and S5 in the Supporting Information.

The speed-up effects of pFind’s index mechanism are

shown as Tables 6 and 7 in detail. In Table 7, using the

peptide index, pFind achieves a speedup of two to three in

both one-step mode and multi-step than pFind not using the
Table 7. Time usage of database searching (minute)

Mode Search Engines Exp. 1 Exp. 2

One-step SEQUEST 296 1302
Mascot 43 1241
X!Tandem 68 1223
pFind 85 1768
pFind# 37 815

Multi-step X!Tandem 20 613
pFind 33 244
pFind# 16 94

#means using peptide index, otherwise means not using peptide
index.

Copyright # 2010 John Wiley & Sons, Ltd.
peptide index. In addition, Table 6 shows scoring number

and time usage distribution of pFind in Exp.2. Obviously, the

similarity scoring occupies more than 90% of the total time,

and, using the peptide index, the scoring number decreases

nearly 50%, resulting in a high efficiency and also confirming

the analysis described at the beginning of the section.

In summary, from the above experiments, it is obvious that

that peptide index avoids redundant peptide-spectrum

matching and redundant scoring, and thus results in a high

efficiency. It is also worth emphasizing that such an index

strategy could speed up database searching without loss of

accuracy, since it has nothing to do with the scoring

algorithm itself but only decreases the redundant operations;

therefore, it could be widely used in other database search

engines, as well as in combination with other database

searching techniques, such as paralleling searching.
TANDEM MASS SPECTA INDEXING

Peptide-spectrum matching consists of two substeps: (1)

mapping candidate peptides to precursors, and (2) map-

ping theoretical fragment ions of a candidate peptide to

observed peaks of a tandem spectrum. The step of scoring is

to evaluate the similarity between the peptide and the

spectrum based on thematched ions/peaks. While different

search engines are featured with their respective similarity

scoring schemes, their first two steps are essentially the

same. When the search engine is adequately optimized, the

peptide generation step takes less than 5% of the total

identification time, but the peptide-spectrummatching step

takes 40% to 60%.
Rapid Commun. Mass Spectrom. 2010; 24: 807–814

DOI: 10.1002/rcm



812 Y. Li et al.
Speeding up peptide-precursor matching
Given a peptide P, a set of tandem mass spectra, and a

specified maximum mass deviation, the peptide-precursor

matching is to find those tandem mass spectra whose

precursors are within the maximum mass deviation from

the mass of P. Without loss of generality, we check the

average times of failed comparisons to evaluate algorithms’

performance in peptide-precursor matching (it is also used

in the next subsection). Failed comparisons are defined as un-

necessary peak comparisons during the peptide-precursor

match, that is, all comparisons before a valid precursor is

found.

A simple method is to traverse all spectra in the set,

checking each spectrum to see if it matches the peptide P.

This method is obviously very time-consuming, with time

complexity O(N), where N is the size of the spectra set,

because all spectra have to be checked even if there is only

one spectrum matching the peptide. A refined method is to

sort the spectra by their precursor mass first, and then use a

binary search to find if there is one spectrum matching the

peptide. Since the spectra are sorted, if one spectrum is

matched, then all matched spectra can easily be obtained.

This query approach is implemented in X!Tandem, with time

complexity O(log2 N).

However, when the number of the spectra increases, the

binary search based method is sometimes not efficient

enough. We note the fact that the precursor masses are in a

pre-specified range, e.g., 400–2000 m/z, or 800–6000Da. This

feature can be used to further optimize the peptide-precursor

matching. Specifically, we can index all spectra as follows:
1) S
Cop
ort all spectra by their precursor masses;
2) A
ccording to the actual mass range of all the precursors,

create bins with a constant width;
3) F
or each bin, store their corresponding spectra.
Figure 4. An example of inverted index desig

ing. The left part contains several precurso

according to the tolerance, �0.5Da. The right

When a massM is to be queried, a hash functi

inverted index and all spectra within the tolera

yright # 2010 John Wiley & Sons, Ltd.
Thuswe have constructed an inverted index for precursors

(for the details, see Supplementary Algorithm 4, Supporting

Information): the dictionary contains all the bins, and the

inverted list for each bin records the spectrum IDs whose

precursor mass windows overlap with the bin. Such an

inverted index is illustrated in Fig. 4. When querying spectra

by a peptide, we can use a hash function to quickly find the

matched bin and locate all the matched spectra. If the width

of the bin is appropriate and a good hash function is used, the

first proper spectrum can be found in about O(1) time. As a

theoretical prediction, the inverted index can efficiently

decrease the number of failed comparisons. The latter two

methods are both implemented in pFind 2.1, and compared

in the section entitled ‘Experimental’ below.

Speeding up fragment ion-peak matching
When a peptide is matched to a spectrum, i.e., the peptide

mass falls in the precursor mass window of the spectrum, the

next operation is tomatch the theoretical fragment ions of the

peptide with the observed fragment peaks of the spectrum,

which is the common basis for all similarity scoring

computations. Since hundreds of thousands of peptides

may match the same spectrum, or more specifically the same

set of fragment peaks of this spectrum, the fragment ion-peak

matching may significantly affect the identification effi-

ciency.

Given a specified set of T fragment ion types (e.g. b, y, b2þ

and y2þ), a peptide P with L amino acids corresponds to a

theoretical spectrum with M�TL fragment ions. Given a

tandemmass spectrum SwithN sorted fragment peaks and a

specified maximum mass deviation, the fragment ion-peak

matching is to find out which of the M theoretical fragment

ions are matched, i.e., whether the theoretical fragment ion is

within the maximum deviation from the m/z ratio of any of
ned for quick peptide-precursor match-

rs and their mass tolerance intervals

part is the inverted index of the spectra.

on is used to locate the proper key in the

nce window can be efficiently retrieved.

Rapid Commun. Mass Spectrom. 2010; 24: 807–814

DOI: 10.1002/rcm



MS/MS database searching by peptide and spectrum indexing 813
the observed N fragment peaks in the spectrum. This

problem is actually the same as the previous peptide-

precursor matching problem.

A simple method is to use a binary search in the sorted

fragment peaks of the spectrum and find out which of theM

theoretical fragment ions are matched. The time complexity

of this method is O(Mlog2 N). Another method is to sort the

M theoretical fragment ions first, with time complexity

O(Mlog2 M), and then the fragment ion-peak matching is

equivalent to merging two sorted lists, with complexity

O(MþN). According to our experiment, the two methods

have similar performance in different data sets, and the latter

method has been implemented in the earlier version of

pFind, which will be used for comparison in the Exper-

imental section below.

Actually, the fragment ion-peakmatching is essentially the

same as the peptide-precursor matching, with experimental

peaks corresponding to precursors, and theoretical fragment

ions corresponding to peptides; hence the indexing tech-

nique described in the previous section can be applied here,

and it is indeed implemented in pFind 2.1. The fragment

peaks dictionary contains a series of bins, and the inverted

list for each bin records the experimental peaks whose m/z

windows overlap with the bin. As a further optimization, all

values of m/z (stored with the type of double-precision float

pointing numbers) are multiplied by a constant and rounded

to integers, in order to speed up the numerical calculations.

This index can be constructed in O(N) time, which is

amortized among the matching with hundreds of thousands

of peptides and becomes negligible. For a query with M

theoretical fragment ions of a peptide, the time complexity of

matchingwith theN fragment peaks of the spectrum is O(M),

regardless of N.

Experimental
Experimental settings are identical to those described in the

section entitled ‘Index query and experiment’ above. Table 8

lists the performances of the different peptide-spectrum

matching methods with and without spectrum indexing.

As mentioned above, peptide-spectrum matching is very

worth speeding up, and comparisons between masses of

fragment ions and experimental peaks are especially time-

consuming. In Table 8, the number of failed comparisons can be

even less than 1 when inverted indexes are used, which

indicates that appropriate peaks could be found directly or
Table 8. Performance of database searching with and with-

out the spectrum indexing

Search time
(min)

Number of failed comparisons

Peptide-
precursor

Fragment
ion-peak

Exp.1.a 28 10.26 5.21
Exp.1.b 16 0.22 0.91
Exp.2.a 178 11.20 6.36
Exp.2.b 94 0.08 0.81

Only the performances using multi-step search mode are compared.
In Exp.1.a and Exp.2.a no spectrum indexing is used in the database
search, while in Exp.1.b and Exp.2.b the spectrum indexing is used.

Copyright # 2010 John Wiley & Sons, Ltd.
via averaging at most one time to compare the fragment ion

mass with masses in the inverted index. Therefore, inverted

indexes for precursors and fragment peaks of the tandem

mass spectra could sharply reduce the number of the failed

comparisons in peptide-spectrummatching by as much as ten

times, and in consequence the total peptide identification

time is reduced significantly. In Exp.2, the identification time

is sharply reduced by 47.2%, which means that the spectrum

indexing achieves another speedup of two.
DISCUSSION

The key idea of this study is that well-designed indexing

technology and query methods can greatly speed up the

database search engines for protein identification. Specifi-

cally, peptide indexing can achieve a speedup of two to five,

and spectrum indexing can achieve a speedup of another

two, which has been proved by pFind but is also generally

applicable to all other search engines.

While peptide indexing is quite efficient for fully specific

digestion, it has potential limitations when dealing with the

enormous numbers of peptides from non-specific digestion,

since both the peptide dictionary and the inverted lists

expand over 100 times in number and in space. Therefore,

efficient compression of both the peptide dictionary and the

inverted lists is of great importance.

For the compression of the peptide dictionary for non-

specific digestion, two features of the candidate peptides

might be useful: among the peptides from the same protein

sequence, those that share the same start position have

consecutive lengths, and those that have the same length

start from consecutive positions. Thus a bit-vector can be

used to store all these peptides compactly. Another way is to

use a suffix tree to store all protein sequences and use a tree-

traversal algorithm to generate all possible candidate

peptides.16,24

It is also necessary to compress the inverted lists. After

identification of peptides, the search engine needs to query

all corresponding proteins. As the inverted lists are

constructed before the peptide identification, it is necessary

to store all peptides and their corresponding proteins, no

matter whether a peptide occurs in the identification results

or not. While a normal identification usually produces 3000–

5000 reliable peptides, the number of peptides non-

specifically digested in silico from Swiss-Prot may go well

beyond 109 (see Table 1). Actually only the proteins

corresponding to identified peptides need to be queried;

this can be accomplished efficiently by the Aho-Corasick

algorithm,25 which accomplishes querying 5000 peptides in a

database with about 130,000 proteins in �20 s on a common

personal computer.

The algorithms proposed in this paper can be feasibly

applied in multi-core computers and clusters. Generally

speaking, spectra are divided into several groups and are

identified on each node respectively. Then the peptide index

can be constructed and saved on each node. As a further

improvement, only the peptides that are in the mass range of

a specified spectra group need to be stored in the index files.

However, owing to the fast construction of the peptide index,

such a segmented index is usually unnecessary. Both
Rapid Commun. Mass Spectrom. 2010; 24: 807–814

DOI: 10.1002/rcm



814 Y. Li et al.
multithreads- and cluster-based searching have been imple-

mented in pFind.

In summary, peptide and spectrum indexing are proposed

in this paper, which are implemented in pFind and

consequently compare very favorably with other predomi-

nant first-generation search engines. Indexing technology is a

basic method that could be conveniently used in most

database search algorithms, since elimination of redundant

peptides is always useful before database search. As a result,

a peptide index could speed up a database search

significantly with little time cost. Furthermore, a spectrum

index is also very useful to most scoring schemes.

Particularly, the indexing method proposed in this paper

has no possibility for decreasing the accuracy, since every

distinct peptide is stored in the peptide index. Consequently,

it could be also integrated with other related speeding up

approaches, including paralleling protein identification, tag-

based database searching, spectrum clustering, etc. As a

general idea, it is really promising to systematically apply

indexing techniques to the design of database search engines

for protein identification.
SUPPORTING INFORMATION

Additional supporting information may be found in the

online version of this article.
Acknowledgements
This work was supported by the National High Technology

Research and Development Program (863) of China under

Grant Nos. 2007AA02Z315, 2008AA02Z309, the National

Key Basic Research & Development Program (973) of China

under Grant No.2002CB713807, and the CAS Knowledge

Innovation Program under Grant No. KGGX1-YW-13.
Copyright # 2010 John Wiley & Sons, Ltd.
REFERENCES

1. Perkins DN, Pappin DJ, Creasy DM, Cottrell JS. Electropho-
resis 1999; 20: 3551.

2. Eng J. J. Am. Soc. Mass Spectrom. 1994; 5: 976.
3. Fu Y, Yang Q, Sun R, Li D, Zeng R, Ling CX, Gao W.

Bioinformatics 2004; 20: 1948.
4. Gronert S, Li KH, Horiuchi M. J. Am. Soc. Mass Spectrom.

2005; 16: 1905.
5. Gao Y, Wang Y. J. Am. Soc. Mass Spectrom. 2007; 18: 1973.
6. Craig R, Beavis RC. Bioinformatics 2004; 20: 1466.
7. Geer LY,Markey SP, Kowalak JA,Wagner L, XuM,Maynard

DM, Yang X, Shi W, Bryant SH. J. Proteome Res. 2004; 3: 958.
8. Colinge J, Masselot A, Giron M, Dessingy T, Magnin J.

Proteomics 2003; 3: 1454.
9. Available: http://www.unimod.org.
10. Mann M, Wilm M. Anal. Chem. 1994; 66: 4390.
11. Tabb DL, Saraf A, Yates JR III. Anal. Chem. 2003; 75: 6415.
12. Sunyaev S, Liska AJ, Golod A, Shevchenko A. Anal. Chem.

2003; 75: 1307.
13. Tanner S, Shu H, Frank A, Wang LC, Zandi E, Mumby M,

Pevzner PA, Bafna V. Anal. Chem. 2005; 77: 4626.
14. Datta R, Bern M. J. Comput. Biol. 2009; 16: 1169.
15. Kim S, Gupta N, Bandeira N, Pevzner PA. Mol. Cell. Pro-

teomics 2008; M800103.
16. Bafna V, Edwards N. In. On de novo interpretation of tandem

mass spectra for peptide identification, RECOMB ’03: Proceed-
ings of the 7th Annual International Conference on Research
in Computational Molecular Biology, 2003; ACM Press:
2003; 9–18.

17. Shilov IV, Seymour SL, Patel AA, Loboda A, Tang WH,
Keating SP, Hunter CL, Nuwaysir LM, Schaeffer DA. Mol.
Cell. Proteomics 2007; 6: 1638.

18. Yen CY, Russell S, Mendoza AM, Meyer-Arendt K, Sun S,
Cios KJ, Ahn NG, Resing KA. Anal. Chem. 2006; 78: 1071.

19. Dutta D, Chen T. Bioinformatics 2007; 23: 612.
20. Roos FF, Jacob R, Grossmann J, Fischer B, Buhmann JM,

Gruissem W, Baginsky S, Widmayer P. Bioinformatics 2007;
23: 3016.

21. Park CY, Klammer AA, Kall L, MacCoss MJ, Noble WS.
J. Proteome Res. 2008; 7: 3022.

22. Craig R, Beavis RC. Rapid Commun. Mass Spectrom. 2003; 17:
2310.

23. Elias JE, Gygi SP. Nat. Methods 2007; 4: 207.
24. Lu B, Chen T. J. Comput. Biol. 2003; 10: 1.
25. Aho A, Corasick M. Commun. ACM 1975; 18: 333.
Rapid Commun. Mass Spectrom. 2010; 24: 807–814

DOI: 10.1002/rcm


