
RAPID COMMUNICATIONS IN MASS SPECTROMETRY

Rapid Commun. Mass Spectrom. 2010; 24: 1791–1798

) DOI: 10.1002/rcm.4578
Published online in Wiley InterScience (www.interscience.wiley.com
An efficient parallelization of phosphorylated peptide

and protein identification

Leheng Wang1,2y, Wenping Wang1,2,3y, Hao Chi1,2,3, Yanjie Wu1,2,3, You Li1,2,3, Yan Fu1,2,

Chen Zhou1,2,3, Ruixiang Sun1,2, Haipeng Wang1,2,3, Chao Liu1,2,3, Zuofei Yuan1,2,3,

Liyun Xiu1,2,3 and Si-Min He1,2*
1Key Lab of Intelligent Information Processing, Chinese Academy of Sciences, Beijing 100190, P.R. China
2Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, P.R. China
3Graduate University of Chinese Academy of Sciences, Beijing 100049, P.R. China

Received 8 November 2009; Revised 19 March 2010; Accepted 12 April 2010
*Correspo
Processin
China.
E-mail: sm
yThese au
Protein sequence database search based on tandem mass spectrometry is an essential method for

protein identification. As the computational demand increases, parallel computing has become an

important technique for accelerating proteomics data analysis. In this paper, we discuss several

factors which could affect the runtime of the pFind search engine and build an estimation model.

Based on this model, effective on-line and off-line scheduling methods were developed. An experi-

ment on the public dataset from PhosphoPep consisting of 100 RAW files of phosphopeptides shows

that the speedup on 100 processors is 83.7. The parallel version can complete the identification task

within 9min, while a stand-alone process on a single PC takes more than 10h. On another larger

dataset consisting of 1 366 471 spectra, the speedup on 320 processors is 258.9 and the efficiency is

80.9%. Our approach can be applied to other similar search engines. Copyright# 2010 JohnWiley &

Sons, Ltd.
Shotgun proteomics based on tandem mass spectrometry

coupled with liquid chromatography (LC/MS/MS) have

become key techniques for biological research. An important

task in proteomics is to automatically identify peptides and

proteins.1,2 The database search approach addresses this

problem by assigning known peptide sequences to observed

tandem mass spectra.3 The popular commercial search

engines include SEQUEST,4 Mascot5 and Phenyx.6,7 Some

open-source tools have also been developed, e.g. X!Tandem8

and OMSSA.9 In our earlier work, we have developed the

software pFind,10–14 which is employed as a platform in this

paper.

There are many reasons leading to a significant explosion

of computational demand in database search. Firstly, with

the development of liquid chromatography and mass

spectrometry, the generating rate of spectra greatly exceeds

the upgrading rate of computer hardware.15 The size of

protein databases is also increasing significantly,16,17 as

depicted in Fig. 1. Moreover, the variable modifications cause

combinatorial explosion when searching the database, such

as phosphorylation which occurs frequently in eukaryotic

proteins, as illustrated in Fig. 2 by pScan.18 In addition, in

proteogenomics,19,20 tandem mass spectra may be searched

against a multi-species genome database directly.20–24

Since the computational demand is increasing remarkably,

the identification speed is becoming a bottleneck in high-
ndence to: S.-M. He, Key Lab of Intelligent Information
g, Chinese Academy of Sciences, Beijing 100190, P.R.

he@ict.ac.cn
thors contributed equally to this work.
throughput proteomics. The following are the common

speedup methods:

1. S
pectra preprocessing: filter out the noise peaks, remove

low-quality tandem mass spectra and adjust the charge

states of precursor ions;25–29
2. S
pectra clustering: integrate similar tandem mass spectra

into a representative one to carry out the database

search;30,31
3. It
erative identification: first, launch a pre-search with

enzyme-specific digestion and common modifications.

Then, run a series of sub-searches to prune search space

iteratively with more and more stringent settings, such as

non-specific digestion and more modifications.;6,7,32,33
4. F
iltration via de novo technique: integrate de novo sequen-

cing with database search to filter the candidate pep-

tides;34–38
5. S
pace-for-time substitution: use pre-computing and

indexing techniques, instead of repeated calculating;39–45
6. H
ardware acceleration: use graphics processing units

(GPU), field programmable gate arrays (FPGA) and other

hardware technologies to speed up the ’hot spot’ modules

of a search engine;46–48
7. P
arallel technology: distribute the computational load

efficiently among a lot of computers. With in-depth soft-

ware design, a 100-fold acceleration may be obtained in a

large-scale cluster.

Some of the methods, such as iterative identification, have

the potential to affect the accuracy of identification. On the

other hand, parallel computing is a lossless accelerating

method, which means the search results of the parallel

version and the stand-alone version should be exactly the
Copyright # 2010 John Wiley & Sons, Ltd.



Figure 1. The size of protein sequence databases grows significantly. (a) The growth of the base pairs of DNA in GenBank

(1982–2008). (b) The growth of the UniProtKB/Swiss-Prot protein knowledge database (1985–2010).

1792 L. Wang et al.
same. Moreover, parallel computing can be combined with

other methods. For instance, the iterative identification

method has been successfully combined with parallel

computing in X!Tandem49,50 and Phenyx.6,7 With the

popularity of cluster hardware, parallel computing has

become a practical solution for speeding up protein

identification, which is the focus of this paper.

Most of the peptide and protein search engines have their

own parallel implementations: SEQUEST uses parallel virtual

machine (PVM) to build its cluster system,29 while Mascot and

Phenyx use message passing interface (MPI). As an open-source

software, X!Tandem has more than one parallel implementa-

tion.49,50 Additionally, these systems have been integrated

into higher-level application frameworks, such as web

service or grid.51–54 Furthermore, in the field of high-

performance parallel computing, the so-called cloud com-

puting is becoming more and more popular. Halligan has

migrated X!Tandem and OMSSA to the Amazon cloud

computing platform.55
Figure 2. The mass distribution of phosphorylated and unmodifi

peptides is hundreds of times more than that of the unmodified o

by pScan. The parameters include phosphorylation as variable m

protease. Up to two missed cleavages are allowed for the pep

unmodified peptides. (b) The distribution of precursor ion mass

Copyright # 2010 John Wiley & Sons, Ltd.
For parallel computing, scheduling is the key issue. Its

main objective is load balancing among all computing nodes.

In other words, the tasks at each node should complete at

exactly the same time if possible, in order to minimize the

total runtime.56–58 Most of the parallel protein identification

systems only adopt random-like scheduling methods, in

which the efficiency of load balancing cannot be assured.

Deciu et al. pointed out that the effectiveness of any

scheduling method depended on the accurate prediction

of the search time for each tandem mass spectrum.59 They

investigated SEQUEST and built a model to estimate the

search time. The model was used in their scheduling

algorithm and reduced the total runtime significantly.

However, more and more search engines, including pFind,

applied the large-scale indexing and dispatching technology

to speed up the identification.42,44,45 The indexing has greatly

improved the identification speed of the stand-alone version,

but has also brought more complexity to the parallel

scheduling. It is not enough to use the existing methods.
ed peptides. The number of candidates of phosphorylated

nes. IPI.HUMAN.v3.55 is used to calculate the distribution

odification. For the in silico digestion, trypsin is specified as

tides. (a) The distribution of precursor ion masses of all

es of all phosphorylated peptides.

Rapid Commun. Mass Spectrom. 2010; 24: 1791–1798

DOI: 10.1002/rcm



Phosphorylated peptide and protein identification 1793
Based on the runtime estimation of pFind, we have

designed two different scheduling algorithms. An exper-

iment is conducted on a public dataset from PhosphoPep60

which consists of 100 RAW files of phosphorylated peptides.

It shows that the speedup on 100 processors is 83.7 and the

efficiency is 83.7%. In another experiment on a larger dataset

consisting of 1 366 471 tandem mass spectra, the speedup on

320 processors is 258.9 and the efficiency is 80.9%. Both

scheduling methods showed good scalability. The methods

and results are detailed in the following sections.
Table 1. The performance of different splitting methods on

the mouse liver dataset

Serial runtime (s)

Subtasks formed from sorted spectra 54014.1
Random subtasks 150190.1
EXPERIMENTAL

Dataset and parameters
Three different phosphopeptides datasets were used in our

experiments: The first dataset is mouse liver phosphopep-

tides61 containing 108 870 tandem mass spectra. The

database is IPI Mouse 3.68, which contains 56 729 protein

sequences. The second dataset is selected from Phospho-

Pep,60 which contains 190 711 tandem mass spectra. The

database is FlyBase 5.7, which contains 21 129 protein

sequences. The largest dataset of synthetic phosphopeptides

is provided by the Shanghai Institutes for Biological Sciences

(SIBS). It contains 1 366 609 individual tandem mass spectra

totaling 7.36 GB in size. The database is E. coli proteins with

additional standard sequences and contains 4448 protein

sequences in all.

To estimate the false discovery rate (FDR) of peptide-

spectrum matches, the target-decoy strategy has been used in

searching. This widely adopted strategy is based on the

principle that incorrect matches have an equal probability

of being derived from either the target or the decoy

database.62–64 In this strategy, the composite databases

contain protein sequences in both forward and reverse

orientation. After scoring, the FDR can be estimated as

FDR¼ 2 � #R/(#Rþ #F), where #R is the number of spectra

identified from the reverse sequences, and #F is the number

of spectra identified from the forward ones.

The search parameters include carbamidomethylation on

cysteine as fixed modification and phosphorylation on

serine, threonine and tyrosine and oxidation on methionine

as variable modifications. For the in silico digestion, trypsin is

specified as protease. Up to two missed cleavages are

allowed for the peptides. The precursor ion mass tolerance is

�3 Da, and the fragment ion tolerance is �0.5 Da.

Cluster platform
A cluster at the National Institute of Biological Sciences, Beijing

(NIBS) was used for the experiments. Each node of this

cluster has 4 GB RAM and 2 CPU. Each CPU has four cores

with a clock speed of 1.95 GHz. The nodes are interconnected

via switched gigabit Ethernet.

Another cluster, Dawning 5000,65 was also used for the

experiments. Each node has 64 GB RAM and 4 CPU. Each

CPU has four cores with a clock speed of 1.9 or 2.2 GHz. The

nodes are interconnected via InfiniBand. It is a hetero-

geneous cluster, where nodes do not have the same com-

puting power.

The software tools for the experiments involve pFind 2.2,

MPICH 2-1.0.8, ACE 5.6, GCC compiler 4.2.0.
Copyright # 2010 John Wiley & Sons, Ltd.
We implement the pFind cluster architecture based on

MPI. A pFind cluster consists of a single master node and

multiple of slave nodes. The master node assigns search tasks

to particular slave nodes and manages a registry service

maintaining information.
METHODS AND RESULTS

Splitting tandem mass spectra into subtasks
In a database search, one frequently invoked but time-

consuming step is the dispatching module. In this module,

candidate peptides whose masses match the m/z values

within a mass tolerance window are assigned to the

corresponding tandem mass spectra. The peptide indexing

technique has been applied in the query process of

dispatching module of many search engines, such as pFind.

Before identification, the indexing process digests proteins

in silico, removes redundant peptides, sorts unique peptides

by mass and stores them into indexing file. Then the

dispatching module of search engine sorts all spectra by their

precursor ion masses, sequentially loads peptide sequences

from indexing file, generates candidate peptides with all

possible compositions of modifications for each sequence,

and matches them with the corresponding tandem mass

spectra. This workflow scans the peptide index only once to

assign candidate peptides to each tandem mass spectrum so

that the search efficiency is increased. The time complexity of

the dispatching module is O(NþM), where the variable N

indicates the number of peptides and the variable M

indicates the number of tandem mass spectra. Considering

that N is usually far larger than M, the performance of

dispatching mainly depends on the number of scanned

peptides. The denser the precursor ion masses of the tandem

mass spectra are, the fewer peptides are scanned, and the

higher the performance achieved.

Tasks have to be assigned to every node of the cluster in

parallel computing. How to split the tandem mass spectra into

subtasks is a key issue. As described above, those tandem mass

spectra with similar precursor ion mass should be assigned to

the same subtask, in order to improve the performance of the

dispatching module. Therefore, we should sort the spectra by

massbeforedividingthemintosubtasks.Anexperimentonthe

mouse liver dataset shows that without sorting, the total serial

searching time of all subtasks will be at least twice as long as in

the general case (Table 1).

Parallel scheduling
Scheduling is a critical component of any parallel algorithm.

A parallel algorithm has to divide the large number of

spectra into smaller tasks and schedule the tasks onto the

machines.66 Two important measurements of parallel quality

are speedup and efficiency. If T1 is the time of running the

fastest serial algorithm on a single processor and Tn is the
Rapid Commun. Mass Spectrom. 2010; 24: 1791–1798

DOI: 10.1002/rcm



Figure 4. The runtime of each subtask. On the dataset from

PhosphoPep, if the tandem mass spectra are sorted by

precursor ion mass and divided equally into 256 subtasks,

the runtime of each subtask has an incremental relationship.

Thus, the average precursor ion mass is a good predictor of

the relative runtime for the subtask.

1794 L. Wang et al.
time of a parallel algorithm running on N processors, then

thespeedupisdefinedasSpeedup¼T1/Tn andtheefficiencyis

defined as Efficiency¼ Speedup/N � 100%. Efficiency shows

howwellall processorsareutilized.Anidealefficiencyof100%

meansthatallprocessorsarebeingfullyusedallthetime.Inour

experiments, the scheduling algorithms are carried out on a

different number of processors and speedups and efficiencies

are calculated respectively.

The goal of scheduling is to minimize the completion time of

a parallel search engine by balancing the load over the various

nodes, because an inappropriate scheduling cannot exploit the

true potential of the system, and the benefit gained from

parallelization will be offset.67 Generally speaking, there are

two ways of scheduling: off-line57,58 and on-line,56 also named

staticanddynamicscheduling.Withtheoff-linemethod,all the

tasks have to be assigned to the proper working nodes before

executing. The off-line method assumes that the runtime

estimationis good enough andwecancreatea single meta-task

for each processor. On the other hand, the on-line method

assigns each task in real time. The master process initializes the

slave processes and the subtask list. The subtasks are assigned

to slave processes and searched respectively. When a slave

finishes its current subtask, it will signal the master and receive

another subtask until all subtasks arefinished. With the on-line

method, although the runtime estimation is not perfect, the

parallelization will still be satisfactory. Different from the off-

line method, the on-line method needs smaller, more

numerous subtasks to get load balancing. Parallel SEQUEST29

is based on the on-line scheduling method, while the two

parallel implementations of X!Tandem49,50 use off-line sche-

duling methods.

We have implemented two different scheduling algor-

ithms in the parallel version of pFind, on-line and off-line

scheduling, as detailed in the following sections.

On-line scheduling algorithm
From the point of view of load balance, it is desirable to split

the spectra into as many subtasks as possible. However, as

discussed previously, the dispatching module gains in
Figure 3. The relationship between the subtask size and the p

100, two different datasets were searched on 96 processors with

100 is a satisfactory trade-off point. (a) The experiment on the da

on the dataset from PhosphoPep.

Copyright # 2010 John Wiley & Sons, Ltd.
efficiency by grouping together many spectra of similar

ion masses. Therefore, we must find a balance between these

two considerations. Experiments show that 100 is a reason-

able number of spectra to group into a single task, as Fig. 3

shows. This number will obviously vary somewhat by dataset.

For the on-line scheduling, one efficient heuristic is the

longest processing time (LPT) first rule, which has been shown

to be a 4/3-approximation.67,68 In other words, LPT is

guaranteed to generate a solution no worse than 4/3 optimal.

The LPT rule assigns the n largest jobs first. After that,

whenever a node is free, the longest job among those not yet

processed is assigned to that node. This heuristics places

shorter jobs toward the end of the schedule, where they can

be used to balance the loads.66 For the LPT rule, we do not

need to estimate the runtime accurately. It is sufficient to

order the subtasks by runtime. As an experiment (Fig. 4)
erformance. Based on different subtask sizes, e.g. 50, 80,

on-line scheduling, both of which indicated that the number

taset of mouse liver phosphopeptides. (b) The experiment

Rapid Commun. Mass Spectrom. 2010; 24: 1791–1798

DOI: 10.1002/rcm



Table 2. The performance of on-line scheduling using the

mouse liver dataset

#processors 1 16 32 48 64

runtime (s) 54014.1 3397.1 1759.4 1286.1 1044.8
speedup � 15.9 30.7 42.0 51.7
efficiency (%) � 99.4 95.9 87.5 80.8

Figure 5. The proportion of runtime of each module in the

search engine. More than 85% of the runtime is occupied by

the scoring module alone.

Phosphorylated peptide and protein identification 1795
shows if the spectra are sorted by precursor ion masses and

divided equally into subtasks, the runtime of subtasks will

increase with the average ion masses. The average precursor

ion mass is a good predictor of the relative runtime for the

subtask. As a result, the tandem mass spectra are sorted by

precursor ion mass in ascending order first, and then are

divided equally into subtasks, each of which contains

approximately 100 tandem mass spectra. If subtasks are

assigned to slave processes and searched in descending

order, then the LPT rule is satisfied.

The experiments on the three datasets show good speedup

and scalability (Tables 2, 3, 4).

Off-line scheduling algorithm
The on-line scheduling algorithm described above cannot

perfectly predict the runtime. We have investigated the

various factors affecting the runtime, and designed an off-

line scheduling algorithm.

Firstly, an open-source performance analysis tool, OPro-

file, was utilized to measure the proportion of runtime for

each module in the search engine. In general, more than 70%

of the runtime is occupied by the scoring module alone.

Therefore, the scoring module is the ’hot spot’. Furthermore,

the proportion of runtime of the scoring module will be more

than 85% when searching data of phosphorylated peptides,

as showed in Fig. 5, since billions of candidate peptides may

be matched with the tandem mass spectra by the scoring

module. Consequently, we can approximate the overall

runtime by estimating the runtime of the scoring module

alone.
Table 3. The performance of on-line scheduling using the

dataset from PhosphoPep

#processors 1 16 32 64 96 100 128 160

runtime (s) 44833.3 2817.6 1417.1 752.4 562.5 535.4 467.2 414.6
speedup � 15.9 31.6 59.6 79.7 83.7 96.0 108.1
efficiency (%) � 99.4 98.8 93.1 83.0 83.7 75.0 67.6

Table 4. The performance of on-line scheduling using SIBS

dataset

#processors 1 32 64 96 128 160

runtime (s) 259136.5 8123.4 4084.6 2790.0 2155.4 1790.3
speedup � 31.9 63.4 92.9 120.2 144.7
efficiency (%) � 99.7 99.1 96.8 93.9 90.4

#processors 192 224 256 288 320

runtime (s) 1533.4 1353.2 1218.3 1096.2 1000.9
speedup 169.0 191.5 212.7 236.4 258.9
efficiency (%) 88.0 85.5 83.1 82.1 80.9

Copyright # 2010 John Wiley & Sons, Ltd.
Secondly, to estimate the runtime of the scoring module,

we have predicted the time cost for each match between a

candidate peptide and a tandem mass spectrum. The time

cost involves many factors, such as the length of peptide, the

number of modification sites and the charge states. The

time complexity of each peptide-spectrum match is O(N),

where the variable N indicates the size of the theoretical

fragment ion list (determined by the length of peptide, the

number of modification sites and the charge state). An

experiment (Fig. 6) has been carried out to support this

theoretical prediction. The estimation needs some necessary

detail information, i.e. the charge state, the modification sites

and the length of each candidate peptide of each spectrum.

The problem is how to get the information before the actual

database searching with the off-line method. We can run the

dispatching module in parallel (but without the scoring and

validation modules), and collect the necessary information in

advance.

Thirdly, the distribution of the tandem mass spectra whose

masses are above 3500 Da becomes very sparse in most cases.

Figure 7(a) illustrates this trend. As described above, a

decrease in density leads to a performance decline of the

dispatching module. Therefore, when it comes to the mass

region higher than 3500 Da, the proportion of runtime for the

scoring module should be adjusted lower, as showed by
Figure 6. A linear relationship between the size of theoretical

fragment ion list and the scoring runtime.

Rapid Commun. Mass Spectrom. 2010; 24: 1791–1798

DOI: 10.1002/rcm



Figure 7. The runtime of high mass range. (a) The distri-

bution of the tandem mass spectra whose masses are above

3500 Da (whose proportion is only 1%) becomes very sparse.

(b) For the general tandem mass spectra, the proportion of

runtime of the scoring module is over 85%. (c) When it comes

to the mass region higher than 3500 Da, the proportion of

runtime of the scoring module will decline to 65%.

1796 L. Wang et al.
Figs. 7(b) and 7(c). So the penalty for high mass must be

added into the runtime estimation algorithm.

Considering the above, a model has been built to estimate

the identification time (see Supplementary Algorithm 1,

Supporting Information).

If we get the runtime estimation, load balancing will

become the makespan problem, which is defined as max(C1,

. . ., Cn), where Cj is the computation time for the jth task, is

equivalent to the completion time of the last job to leave the

system. A minimum makespan usually implies a high

utilization of the machines. The makespan problem is a

partition problem69 which is to decide whether a given

multiset of integers can be partitioned into two or more

subsets that have the same sum. It is an NP-hard
Table 5. The performance of off-line scheduling using the

mouse liver dataset

#processors 1 16 32 48 64

runtime (s) 54014.1 3577.1 1869.0 1304.7 1034.8
speedup � 15.1 28.9 41.4 52.2
efficiency � 94.4% 90.3% 86.3% 81.6%

Table 6. The performance of off-line scheduling using the

dataset from PhosphoPep

#processors 1 16 32 64 96 100 128 160

runtime (s) 44833.3 3350.6 1678.0 844.1 575.3 552.1 444.1 381.2
speedup � 13.4 26.7 53.1 77.9 81.2 101.0 117.6
efficiency (%) � 83.8 83.4 83.0 81.2 81.2 78.9 73.5

Copyright # 2010 John Wiley & Sons, Ltd.
problem.66,70,71 In our solution, a simple greedy algorithm

for partition (see Supplementary Algorithm 2, Supporting

Information) was applied and acceptable effect was

achieved. Different from the on-line scheduling, a single

meta-task is created for each processor so that the

communications between master and slaves are less.

The experiments (Tables 5 and 6) for off-line scheduling

show good performance. The experiment on the public

dataset from PhosphoPep shows that the speedup on 100

processors is 81.2. When it comes to more than 100

processors, the off-line scheduling method shows a higher

speedup than the on-line scheduling method.
RESULTS

Figures 8, 9 and 10 depict the trends of the two scheduling

methods. Both of them are close to linear speedup. On a

smaller public dataset from PhosphoPep consisting of 100

RAW files, when the number of processors increases to 100,

the speedup is 83.7. This means that the parallel version on a

usual cluster can complete the task in 535 s, while the runtime

of a stand-alone process on a single PC is more than 10 h. On

another larger dataset, the speedup on 320 processors is 258.9

and the efficiency is 80.9%.

The two scheduling methods have their own features and

scope of application. With more than 100 processors, the off-

line scheduling method showed better scalability. The reason

is that the on-line scheduling of thousands of subtasks

requires more coordination than the off-line scheduling

method which incorporated only one subtask for each

processor. However, the off-line scheduling is only suitable

for a homogeneous cluster environment, in which all nodes

are exactly the same (discussed below). On a heterogeneous

cluster, the on-line scheduling has better adaptability.
Figure 8. The speedups on the dataset of mouse liver phos-

phopeptides. The speedups of on-line and off-line scheduling

methods on the dataset of mouse liver phosphopeptides. The

experiments were run on the Dawning 5000 cluster.

Rapid Commun. Mass Spectrom. 2010; 24: 1791–1798

DOI: 10.1002/rcm



Figure 10. The speedups on the dataset of synthetic phos-

phopeptides from SIBS. The speedups of on-line scheduling

methods on the dataset of synthetic phosphopeptides from

SIBS. The experiments were run on the Dawning 5000 cluster.

Figure 9. The speedups on the dataset from PhosphoPep.

The speedups of on-line and off-line scheduling methods on

the dataset from PhosphoPep. The experiments were run on

the NIBS cluster.

Phosphorylated peptide and protein identification 1797
DISCUSSION

Parallel computing is an important solution for speeding up

tandem mass spectrometry-based protein identification.

Based on the runtime estimation of tandem mass spectra,

we have investigated two different scheduling algorithms.

The off-line scheduling method described in this paper is

applied in a homogeneous cluster environment. When in a

heterogeneous cluster environment, one option is to estimate

the computing power of each node using a standard dataset

a priori.

This paper mainly discussed the strategy for parallel

search. However, it can also be combined with other

acceleration technologies, like preprocessing and iterative

identification strategies. With the improvement of hardware

(like multi-core) technology, the combination of the dis-

tributed technology and the multi-threading technology will

become important. Inside a single process, multi-threading
Copyright # 2010 John Wiley & Sons, Ltd.
can be used to accelerate the ’hot spot’ modules, like the

scoring module. FPGA or GPU technology can also be used

to speed up the ’hot spot’ modules.

Furthermore, large-scale tandem mass spectrometry data

analysis and large-scale text information retrieval have many

similarities. GFS,72 MapReduce,73 Bigtable74 and Chubby75

introduced by Google are successful industrial applications

for large-scale parallel storage, indexing and query technol-

ogies. The architecture of Google’s cluster,76 which consists

of thousands of computing nodes, is also valuable for parallel

identification of tandem mass spectra.

Our future work will focus on large-scale parallel protein

identification running on thousands of CPUs. Cloud

computing will be introduced to pFind for providing the

software-as-a-service (SAAS) searching.
SUPPORTING INFORMATION

Additional supporting information may be found in the

online version of this article.

Acknowledgements
The authors thank Mengqiu Dong, Rong Zeng, Sujun Li,

Quanhu Sheng, Chuan Wang, Bing Yang, Zhiyi Jing and

Shengbo Fan for valuable discussions. This work was sup-

ported by the National High Technology Research and

Development Program (863) of China under Grant Nos.

2007AA02Z315, 2008AA02Z309, the National Key Basic

Research & Development Program (973) of China under

Grant Nos. 2002CB713807 and 2010CB912701, and the CAS

Knowledge Innovation Program under Grant No. KGGX1-

YW-13.
REFERENCES

1. Aebersold R, Mann M. Nature 2003; 422: 198.
2. Steen H, Mann M. Nat. Rev. Mol. Cell. Biol. 2004; 5: 699.
3. Xu C, Ma B. Drug Discov. Today 2006; 11: 595.
4. Eng JK, McCormack AL, Yates JR III. J. Am. Soc. Mass.

Spectrom. 1994; 5: 976.
5. Perkins DN, Pappin DJ, Creasy DM, Cottrell JS. Electropho-

resis 1999; 20: 3551.
6. Colinge J, Masselot A, Cusin I, Mahe E, Niknejad A, Argoud-

Puy G, Reffas S, Bederr N, Gleizes A, Rey PA, Bougueleret L.
Proteomics 2004; 4: 1977.

7. Colinge J, Masselot A, Giron M, Dessingy T, Magnin J.
Proteomics 2003; 3: 1454.

8. Craig R, Beavis RC. Bioinformatics 2004; 20: 1466.
9. Geer LY, Markey SP, Kowalak JA, Wagner L, Xu M,

Maynard DM, Yang X, Shi W, Bryant SH. J. Proteome Res.
2004; 3: 958.

10. Fu Y, Yang Q, Sun R, Li D, Zeng R, Ling CX, Gao W.
Bioinformatics 2004; 20: 1948.

11. Fu Y, Gao W, He SM, Sun RX, Zhou H, Zeng R. Pacific
Symposium on Biocomputing 2007; 12: 421.

12. Li D, Fu Y, Sun R, Ling CX, Wei Y, Zhou H, Zeng R, Yang Q,
He S, Gao W. Bioinformatics 2005; 21: 3049.

13. Wang LH, Li DQ, Fu Y, Wang HP, Zhang JF, Yuan ZF, Sun
RX, Zeng R, He SM, Gao W. Rapid Commun. Mass Spectrom.
2007; 21: 2985.

14. Jia W, Lu Z, Fu Y, Wang HP, Wang LH, Chi H, Yuan ZF,
Zheng ZB, Song LN, Han HH, Liang YM, Wang JL, Cai Y,
Zhang YK, Deng YL, Ying WT, He SM, Qian XH. Mol. Cell.
Proteomics 2009; 8: 913.

15. Mann M, Kelleher NL. Proc. Natl. Acad. Sci. USA 2008; 105:
18132.

16. http://www.ncbi.nlm.nih.gov/Genbank/genbankstats.html.
Rapid Commun. Mass Spectrom. 2010; 24: 1791–1798

DOI: 10.1002/rcm



1798 L. Wang et al.
17. http://www.expasy.ch/sprot/relnotes/relstat.html.
18. Wang W, Wang L, Wang H, Yuan Z, Chi H, Li Y, Xiu L, Liu

C, Fu Y, Sun R, He S-M. BMC Informatics 2010; submitted.
19. Ansong C, Purvine SO, Adkins JN, Lipton MS, Smith RD.

Brief Funct. Genomic Proteomics 2008; 7: 50.
20. Gupta N, Benhamida J, Bhargava V, Goodman D, Kain E,

Kerman I, Nguyen N, Ollikainen N, Rodriguez J, Wang J,
Lipton MS, Romine M, Bafna V, Smith RD, Pevzner PA.
Genome Res. 2008; 18: 1133.

21. Yates JR III, Eng JK, McCormack AL. Anal. Chem. 1995;
67: 3202.

22. Choudhary JS, Blackstock WP, Creasy DM, Cottrell JS. Pro-
teomics 2001; 1: 651.

23. Choudhary JS, Blackstock WP, Creasy DM, Cottrell JS.
Trends Biotechnol. 2001; 19: S17.

24. Gupta N, Tanner S, Jaitly N, Adkins JN, Lipton M, Edwards
R, Romine M, Osterman A, Bafna V, Smith RD, Pevzner PA.
Genome Res. 2007; 17: 1362.

25. Zhang J, Gao W, Cai J, He S, Zeng R, Chen R. IEEE/ACM T.
Comp. Biol. Bioinfo. 2005; 2: 217.

26. Zhang JF, He SM, Cai JJ, Cao XJ, Sun RX, Fu Y, Zeng R, Gao
W. Genomics, Proteomics & Bioinformatics 2005; 3: 231.

27. Zhang J, He S, Ling CX, Cao X, Zeng R, Gao W. Rapid
Commun. Mass Spectrom 2008; 22: 1203.

28. Yang C, He Z, Yu W. BMC Bioinformatics 2009; 10: 4.
29. Sadygov RG, Eng J, Durr E, Saraf A, McDonald H, MacCoss

MJ, Yates JR III. J. Proteome Res. 2002; 1: 211.
30. Beer I, Barnea E, Ziv T, Admon A. Proteomics 2004; 4: 950.
31. Frank AM, Bandeira N, Shen Z, Tanner S, Briggs SP, Smith

RD, Pevzner PA. J. Proteome Res. 2008; 7: 113.
32. Creasy DM, Cottrell JS. Proteomics 2002; 2: 1426.
33. Craig R, Beavis RC. Rapid Commun. Mass Spectrom. 2003; 17:

2310.
34. Mann M, Wilm M. Anal. Chem. 1994; 66: 4390.
35. Sunyaev S, Liska AJ, Golod A, Shevchenko A, Shevchenko

A. Anal. Chem. 2003; 75: 1307.
36. Kim S, Gupta N, Bandeira N, Pevzner PA. Mol. Cell. Pro-

teomics 2009; 8: 53.
37. Tabb DL, Saraf A, Yates JR III. Anal. Chem. 2003; 75: 6415.
38. Chi H, Sun R-X, Yang B, Song C-Q, Wang L-H, Liu C, Fu Y,

Yuan Z-F, Wang H-P, He S-M, Dong M-Q. J. Proteome Res.
2010; submitted.

39. Edwards N, Lippert R. WABI 2002 Algorithms in Bioinfor-
matics: Second International Workshop, 2002; 68.

40. Lu B, Chen T. Bioinformatics 2003; 19: 113.
41. Tang WH, Halpern BR, Shilov IV, Seymour SL, Keating SP,

Loboda A, Patel AA, Schaeffer DA, Nuwaysir LM. Anal.
Chem. 2005; 77: 3931.

42. Li D, Gao W, Ling CX, Wang X, Sun R, He S. Bioinformatics
2006; 22: 2572.

43. Dutta D, Chen T. Bioinformatics 2007; 23: 612.
44. Li Y, Chi H, Wang LH, Wang HP, Fu Y, Yuan ZF, Li SJ, Liu

YS, Sun RX, Zeng R, He SM. Rapid Commun. Mass Spectrom.
2010; 24: 807.

45. Zhou C, Chi H, Wang L-H, Li Y, Wu Y-J, Fu Y, Sun R-X, He
S-M. Rapid Commun. Mass Spectrom. 2010; submitted.

46. Bogdan I, Coca D, Rivers J, Beynon RJ. Bioinformatics 2007; 23:
724.
Copyright # 2010 John Wiley & Sons, Ltd.
47. Dandass YS, Burgess SC, Lawrence M, Bridges SM. BMC
Bioinformatics 2008; 9: 197.

48. Hussong R, Gregorius B, Tholey A, Hildebrandt A. Bioinfor-
matics 2009; 25: 1937.

49. Bjornson RD, Carriero NJ, Colangelo C, Shifman M, Cheung
KH, Miller PL, Williams K. J. Proteome Res. 2008; 7: 293.

50. Duncan DT, Craig R, Link AJ. J. Proteome Res. 2005; 4:
1842.

51. Dominic B, David Sigfredo A. J. Parallel Distrib. Comput. 2006;
66: 1503.

52. Quandt A, Hernandez P, Kunzst P, Pautasso C, Tuloup M,
Hernandez C, Appel RD. Stud. Health Technol. Inform. 2007;
126: 13.

53. Zosso D, Podvinec M, Muller M, Aebersold R, Peitsch MC,
Schwede T. Stud. Health Technol. Inform. 2007; 126: 3.

54. Quandt A, Masselot A, Hernandez P, Hernandez C, Maffio-
letti S, Appel RDD, Lisacek F. Proteomics 2009; 9: 2648.

55. Halligan BD, Geiger JF, Vallejos AK, Greene AS, Twigger
SN. J. Proteome Res. 2009; 8: 3148.

56. Ishfaq A, Arif G. IEEE Trans. Software Eng. 1991; 17: 987.
57. Gajski DD, Jib-Kwon P. Computer 1985; 18: 9.
58. Chu WWL, Min-Tsung; Hellerstein, Joseph. Computers, IEEE

Trans. Computers 1984; 691.
59. Deciu C, Sun J, Wall MA. J. Proteome Res. 2007; 6: 3443.
60. Bodenmiller B, Malmstrom J, Gerrits B, Campbell D, Lam H,

Schmidt A, Rinner O, Mueller LN, Shannon PT, Pedrioli PG,
Panse C, Lee HK, Schlapbach R, Aebersold R. Mol. Syst. Biol.
2007; 3: 139.

61. Villen J, Beausoleil SA, Gerber SA, Gygi SP. Proc. Natl. Acad.
Sci. USA 2007; 104: 1488.

62. Peng J, Elias JE, Thoreen CC, Licklider LJ, Gygi SP.
J. Proteome Res. 2003; 2: 43.

63. MacCoss MJ. Curr. Opin. Chem. Biol. 2005; 9: 88.
64. Elias JE, Haas W, Faherty BK, Gygi SP. Nat. Methods 2005; 2:

667.
65. Sun N-H, Li K, Chen M-Y. Chin. J. Computers 2008; 31: 1503.
66. Pinedo M. Scheduling: Theory, Algorithms, and. Systems, (2nd

edn). Prentice Hall: New Jersey, 2002.
67. Yu-Kwong K, Ishfaq A. ACM Comput. Surv. 1999; 31: 406.
68. Li Liu YY, Wanbing Shi, Wumeng Lin, Lian Li.First International

Conference on Semantics, Knowledge and Grid (SKG’05), 2005.
69. Mertens S. The Easiest Hard Problem: Number Partitioning.

Oxford University Press: New York, 2003.
70. Garey MR, Johnson DS. Computers and Intractability: A Guide

to the Theory of NP-Completeness. W.H. Freeman and Co.:
New York, 1979.

71. Cormen TH, Leiserson CE, Rivest RL, Stein C. Introduction to
Algorithms, (2nd edn). MIT Press: Cambridge, MA, 2001.

72. Sanjay G, Howard G, Shun-Tak L. SIGOPS Oper. Syst. Rev.
2003; 37: 29.

73. Dean J, Ghemawat S. Commun. ACM 2008; 51: 107.
74. Chang F, Dean J, Ghemawat S, Hsieh WC, Wallach DA,

Burrows M, Chandra T, Fikes A, Gruber RE. 7th USENIX
Symposium on Operating Systems Design and Implementation
(OSDI), 2006; 205.

75. Burrows M. 7th USENIX Symposium on Operating Systems
Design and Implementation (OSDI). 2006.

76. Barroso LA, Dean J, Holzle U. Micro, IEEE 2003; 23: 22.
Rapid Commun. Mass Spectrom. 2010; 24: 1791–1798

DOI: 10.1002/rcm


