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Database search is the dominant approach in high-throughput proteomic analysis. However, the interpretation
rate of MS/MS spectra is very low in such a restricted mode, which is mainly due to unexpected modifications
and irregular digestion types. In this study, we developed a new algorithm called Alioth, to be integrated into
the search engine of pFind, for fast and accurate unrestricted database search on high-resolution MS/MS data.
An ion index is constructed for both peptide precursors and fragment ions, by which arbitrary digestions and a
single site of any modifications and mutations can be searched efficiently. A new re-ranking algorithm is used
to distinguish the correct peptide-spectrum matches from random ones. The algorithm is tested on several
HCD datasets and the interpretation rate of MS/MS spectra using Alioth is as high as 60%–80%. Peptides from
semi- and non-specific digestions, as well as those with unexpectedmodifications or mutations, can be effectively
identified using Alioth and confidently validated using other search engines. The average processing speed of
Alioth is 5–10 times faster than some other unrestricted search engines and is comparable to or even faster than
the restricted search algorithms tested.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

The past decades have seen remarkable progress in proteomics [1],
especially in peptide and protein identification technology, which is
the bedrock of proteomics. Database search has long been the dominant
approach to peptide and protein identification. In database search, the
best matched candidate peptide can be retrieved from a specified
protein sequence database for each spectrum. A fewdatabase search algo-
rithms are used in the routine proteome analysis, such as Mascot [2],
SEQUEST [3], X! Tandem [4,5], OMSSA [6], pFind [7,8] andAndromeda [9].

Generally speaking, a large number of peptide sequences are gener-
ated from the database even in a regular searching mode, where a
few common modifications are allowed and usually the restriction of
full protease specificity is applied. However, increasing demand for
searching semi- or non-specifically digested peptides results in tens to
hundreds of times more peptides than that in fully-specific digestion.
For example, ~35 million fully tryptic peptides are expected from the
SwissProt database v.56.2, compared to ~5.5 billion peptides (161-fold
increase) if enzyme specificity is not considered [10]. Furthermore,
the search space increases dramatically with each additional variable
modification added. The database search will be very time-consuming
if all possible forms of peptides are considered, so in most routine ex-
periments, only considered are peptides with full protease specificity
and a few modifications. However, such “restricted search” leads to
low interpretation rates of MS/MS spectra. Elias et al. in 2005 reported
that only 33.6% and 22.7% of the total CID spectra can be identified
from LTQ and Q-TOF mass spectrometers, respectively [11]. Michalski
et al. in 2011 reported that out of 21,906 HCD spectra from LTQ-
Orbitrap Velos, 16,924 could be reliably recognized as peptide spectra
and yet only 58% of them were identified at 1% FDR, bringing the total
interpretation rate to 44.8% [12]. It has been shown that, because of
the restricted search mode, peptides with unspecified modifications
are not identified, which is one of the major factors underlying the
low interpretation rate of MS/MS spectra [13,14].

To address this problem, many modification-tolerant database
search algorithms were proposed in recent years. MS-Alignment uses
a dynamic programming approach to compare a spectrum against the
sequence database without any specified modification, and peptides
with one or more unknown modifications can be discovered [15,16].
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Interrogator constructs an index of b- and y-ions to speed up database
search and to look for a single unspecified modification on a peptide
[17]. There are a few other algorithms or tools aimed at unrestricted
database search, such as Protein Prospector [13,18], PTMap [19],
P-Mod [20] MassShiftFinder [21] and TwinPeaks [22]. In most of them,
the mass of the precursor ions is no longer used to restrict the scope
of candidate peptides, thus dramatically expanding the searching
space for each spectrum. As such, it is less and less efficient as the data-
base increases. However, the essence of this strategy, which is treating a
modification as a mass shift in MS or MS/MS data, is widely used in the
unrestricted database search algorithms in other forms. For example, in
ModifiComb, the mass shift between the precursors of non-modified
and potentially modified peptides and their retention time information
are used for discovering unspecified modifications [23]. DeltAMT is an
improved approach, which considers all spectrum pairs regardless of
whether they are identified or not [24]. The spectral network approach
proposed byBandeira et al. takes advantage ofmodified andunmodified
peptide pairs to reduce noise peaks and hence improves the efficiency of
peptide identification [25,26]. Spectral library searching algorithms,
such as pMatch [27] and QuickMod [28], are also based on finding
spectrum pairs with mass shifts that can be interpreted as unknown
modifications.

Another type of unrestricted database search tries to reduce the size
of a protein database using an iterative strategy. For example, the error-
tolerant search mode of Mascot enables users to search peptides with
one unspecified modification against the protein list obtained from a
regular search result [29]. X! Tandem also uses a similar strategy to
enable more modifications in the refined search [4]. PeaksPTM is
another algorithm that identifies single-site modified peptides by con-
sidering all modification types in the Unimod database [30], followed
by another round of search looking for two or more common modifica-
tions per peptide among identified sequences [31]. Iterative searching
effectively reduces the database in most cases, but the false discovery
rate (FDR) may be underestimated in the second round. Hence, Bern
et al. proposed a method that gives a conservative estimation of FDR
in multi-stage database search [32]. Another problem of the iterative
strategy is that the result depends on the quality of the first-round
search; true positives may not be identified if the initial setting is not
optimized.

Moreover, others attempt to reduce the search space by using
information from MS/MS data, i.e., the continuity of fragment ions. A
few algorithms use extracted sequence tags or full-length de novo
reconstructions to filter candidate peptides. The tag-based approach
was first proposed byMann andWilm [33], and improved fast in recent
years [34–36]. Many tag-based database search tools are now available,
such as InsPecT [14], Paragon [37], SPIDER [38], ByOnic [39], spectral
dictionaries [40] and MODi [41]. In addition, PEAKS DB incorporates
the de novo sequencing results to improve the sensitivity and accuracy
of the database search effectively [42]. This is a hybrid approach of de
novo sequencing and database search and it is able to find unspecified
modifications via partial sequence information, but it requires high-
quality MS/MS data and accurate extraction of tags.

Although the methods discussed above are effective, the develop-
ment of unrestricted search is still challenging. Firstly, unrestricted
database search tools are usually very time-consuming and thus are sel-
domused in routine experiments. Besides,most of them are designed to
identify peptides bearing perfect protease specificity, e.g. fully tryptic
peptides. However, semi- and non-tryptic peptides or the like may
account for a large proportion of MS/MS spectra. As a result, most of
the unrestricted search strategies thus far have not succeeded in explor-
ing the search space fully. On the other hand, openmodification database
search can lead to many high-scoring but incorrect identifications, and
how to evaluate them remains a problem. If too many modifications
are considered simultaneously, a true match may surrender to a false
one, for example, a sequence with rare, improbable modifications
might score higher than the plain, “ground truth” peptide. A few state-
of-the-art evaluation algorithms, such as PeptideProphet [43,44], Perco-
lator [45,46], SEPro [47] and iProphet [48], are not aimed at unrestricted
search and have not taken full advantage of the occurrence frequency of
different types of modifications.

In this paper, we present a novel algorithm, pFind–Alioth (hereinaf-
ter referred to as Alioth), to address the unrestricted database search
problemwith high resolution MS/MS data. A fragment ion index is con-
structed for theoretical precursors and their fragment ions. Different
from the work of Tang et al. [17], in which a b- and y-ion table is con-
structed to speed up the database search, here we use a new and com-
pact structure to store all peptides and their neutral fragment ions. For
each spectrum, a list of queries is generated to retrieve sequence values
through the index. All thepeptides contained in a protein database,with
or without protease specificity, and with one modification of any kind
are all covered in the search space. To evaluate the quality of peptide–
spectrum matches (PSMs), we used an iterative algorithm to re-rank
the candidate peptides based on the estimated p-values of PSMs [8]
and the occurrence probabilities of the candidate peptides. Compared
with other existing tools, such as pFind (with KSDP scoring function
and the traditional workflow [7,10]) and Mascot, Alioth shows superior
performance and it is also better than the unrestricted search tools eval-
uated in our study, such as InsPecT (blind search mode) and Mascot
(error tolerant search mode).

2. Methods

2.1. Constructing fragment ion index

A neutral fragment ion index table is constructed for a given protein
database. For each protein sequence, all sub-sequences within a speci-
fied length and mass range are generated. For instance, given a peptide
sequence AEHVAEADK, whose length is 9, the number of all its sub-
sequences with length between 2 and 9 is 36. All sub-sequences gener-
ated from the protein database are sorted by their masses in an ascend-
ing order and stored in a datasheet. Then an index table is constructed in
which the key is the mass of each peptide. Fig. 1 shows in details the
construction of an ion index. In practice, the keys need not be stored
due to their continuity. Each ion is represented by three integers: pro-
tein ID, start position and the amino acid (aa) length. Therefore, all
ions are recorded in the datasheet with equal number of bytes. As
shown in Fig. 1, given an explicit mass or mass range to be queried,
the time complexity of finding the first valid position in the datasheet
is O (1).

Unlike the previous approaches, Alioth stores full peptide sequences
and their neutral fragment ions in the same way. This greatly com-
presses the storage space, especially for peptides from non-specific in
silico digestion. N- and C-terminal ions are uniformly stored in a single
table rather than in different tables for specified ion types, therefore the
storage space is further reduced and it is universal for searching differ-
ent types of MS/MS data, e.g., CID and ETD. Given any two sequences
in the database, s1 and s2, it is very easy to judge whether s1 is the prefix
or suffix of s2 using the field values (protein ID, start position and length
in aa) stored in the datasheet, which is essential in the querying step
described below.

2.2. Generating queries

In the Alioth algorithm, each spectrum to be identified is trans-
formed into a list of queries as follows. Firstly, isotopic and precursor-
related peaks are removed and the detected monoisotopic peaks are
transformed into singly-charged ions according to their charge states
[49]. Secondly, k most intense peaks are picked out from the spectrum,
where k is an empirical parameter and in this study it is set to 30. Each
peak p can be represented using an bm, iN tuple, in which m and i
denote the singly chargedm/z value and peak intensity of p, respectively.
Thirdly, given the assumption that b- and y-ions are considered in the



Fig. 1. Construction of the fragment ion index. Proteins are fragmented in silico into short subsequences, and then all subsequences are sorted by their masses in an ascending order and
organized as a datasheet. At last, an index table is constructed, which is a list of (key, value) pairs. Each key denotes a valid mass that has been transformed into an integer, and the
corresponding value to each key is a pointer to the first valid position in the datasheet.
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MS/MS data, each selected peak p: bm, iN is transformed into
four queries:

Q1 : bm – PROTON; i;NtermN;
Q2 : bm – H2O – PROTON; i;CtermN;
Q3 : bcomp mð Þ – PROTON; i;Nterm N and
Q4 : b comp mð Þ –H2O –PROTON; i;Cterm N :

In the representation of the queries above, H2O and PROTON denote
the mass of a water molecule and that of a proton, respectively, and
comp(m) denotes the m/z value of the complementary peak of p. That
is, if the singly charged precursor mass is M, then comp(m) equals to
the value of (M + PROTON − m). If a spectrum can be interpreted as a
peptidewith up to onemodification on an arbitrary site, for every cleav-
age site in the peptide sequence, either the N- or the C-terminal ion, or
both, are unmodified. For example, if the peak is a b-ion with an un-
known modification, then its complementary peak, regardless of
whether it exists in the real spectrum or not, is a non-modified y-ion,
which is the basis of the generation of Q4. Therefore, the four queries
guarantee that for any b- or y-ion carrying up to onemodification, its un-
modified neutral form from the same cleavage is surely to be generated
and later retrieved through the index.

At last, the experimental precursor ion can also be transformed into
a query:

Qpcr : bmp–H2O–PROTON; ip;Nterm=CtermN;

where mp denotes the mass of the singly charged precursor ion and ip
takes the intensity value of the base peak in the tandemmass spectrum.
For short and unmodified peptides, this query is especially helpful to
retrieved them successfully.

2.3. Retrieving candidate partial sequences

As described above, given k peaks selected from a spectrum, a query
list containing 4 k+ 1 queries is generated. Next, for each query in this
list, all of the neutral fragmentswhosemasses fall within a specified tol-
erance window are retrieved from the index table. At the same time, an
N-terminal result list and a C-terminal result list are constructed to store
the results retrieved by the queries. For the N-terminal result list, the
retrieved neutral fragments are marked uniformly using their start aa
positions. Those sharing the same start position in the same protein
are gathered as an intermediate result and merged into a single item
which takes the summed weight of all the constituents. Each item in
the final N-terminal result list contains the start position and the
summed weight. Fig. S1 shows the details; for example, three retrieved
items from the N-terminal query 2, 3 and 12 share the same protein ID
and start position, thus they aremerged in theN-terminal result list. The
construction of the C-terminal result list is similar except that the
retrievedneutral fragmentswith the same endposition in the samepro-
tein are gathered and merged. After all the queries in the list are
searched against the index table, the top-ranked partial sequences in
the two result lists are selected and scored further.

2.4. Generating full-length peptides and scoring

With each partial sequence, the full-length candidate peptides can
be generated according to the specified modification list, e.g., the entire
Unimod database and any amino acid substitutions. For example, for a
partial sequence with a fixed N-terminus, we can enumerate all of its
valid C-termini to keep themass shift d between themass of the peptide
and that of the precursor within a specified range. Then the possible
modifications can be looked up from a specified modification list that
fits the mass of d. If d can be interpreted as at least one modification,
we add the mass shift d as a modification to the peptide sequence and
then score the PSM using the KSDP scoring function in pFind [7].

The PSM score is an important feature to measure the quality of
matching. However, the PSM score alone cannot determine if a
sequence is the correct answer for a spectrum. For example, given two
peptide candidates: A: K.AEHVAEADCKG.T and B: K.AEHVAEADCK.G
with amodification of carbamidomethylation on Cys, whosemass is ab-
solutely equal to the residue mass of Gly, and then search engines are
needed to distinguish them. Peptide B is correct; however, both pep-
tides matched the spectrum with high scores and peptide A may score
higher than B depending on which scoring function is used. Such error
cannot be fully attributed to the design of the scoring function because
the two peptides share the same sequence for the most part and there
may be very little evidence in the spectrum to distinguish them.
However, there was prior knowledge that theMS/MS data originated
from a sample that, before being digested by trypsin, was reduced and
alkylated with iodoacetamide, which would attach a carbamidomethyl
group tomost cysteines, so peptide Bwould be amore probable answer.
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In other words, additional information (data about data, or metadata),
rather than the PSM score alone, helps model the real problem and dis-
tinguish true positives. In this study, we present a new re-ranking algo-
rithm which gives a more comprehensive scoring function to PSMs.

The new scoring function EV-Score is defined using the following
equation:

EV‐Score PSMpep; spec
� � ¼ p value of the PSM

Poc pepð Þ ;

where POC denotes the estimated occurrence probability of the peptide
sequence in the PSM.

The p value of each PSM can be estimated using previously reported
algorithms [8,50]. For POC (pep), we can assume that the occurrence of a
certain modification on a certain amino acid and the type of digestion
are independent of one another, so the occurrence probability of modi-
fication and digestion specificity can be estimated based on their occur-
rence frequency in the dataset being analyzed, e.g. the occurrence
probability of each amino acid, type of modification, and the specificity
of protease digestion (fully-specific, semi-specific on the N-terminus or
C-terminus, or non-specific).

The following procedure shows how to learn POC in an iterative fash-
ion for every peptide in the database search result. In order to simplify
the description, only the occurrence probability of each type of modifi-
cation is taken into account.

1) Search against the combined target-decoy database and select every
top-ranked PSM. All of the PSMs are sorted by their EV-Score. POC is
set to 1 for each peptide initially.

2) Using the traditional target-decoy strategy to get a result setD under
a specified FDR level, e.g., 1%.

3) For each type ofmodificationmodaa that occurs on the amino acid aa,
the occurrence probability of the modification can be estimated as
follows:

POC mtaað Þ ¼ Frequency of modaa in D
Frequency of aa

:

The occurrence probability of regular amino acids without anymod-
ification can be similarly calculated using the equation above via a
null modification type that occurs on all of the regular amino acids.

4) Assuming the independence between different types of modifica-
tions, the probability of a peptide can be calculated using the follow-
ing equation:

POC pepð Þ ¼ ∏length of pep
i¼1 POC modpep ið Þ

� �
;

where pep(i) denotes the ith amino acid in the sequence of pep.
5) Re-calculate the EV-Score and then re-rank all PSMs according to

their EV-Scores, and then go back to step 2. If there are no changes
in the rank of all PSMs or the number of the iterations exceeds a
specified parameter t, the procedure will be terminated.

Fig. S2 shows the change of the distribution of the target and decoy
PSMs in different iterations.

2.5. Combining results from restricted database search

Although unspecifiedmodifications can be automatically detected in
Alioth, only onemodification site is allowed for each candidate peptide.
However, there are peptides that have two or more modifications. Thus
Alioth is followed by a restricted database search using the traditional
settings, i.e., fully-specific digestion and a few common modifications.
The workflow of the restricted searching is similar to that shown in
Ref. [10] but we made some slight changes. Firstly, the modifications
specified in it are learned from Alioth, that is, k most abundant modifi-
cations are added into the following database search. Secondly, the
preprocessing and re-ranking algorithms are the same as Alioth. Then
the results from Alioth and the restricted database search are merged
together. For each spectrum, the peptide with the best EV-Score is re-
ported and further analyzed using the target-decoy strategy [11,51].

3. Experiment and result

3.1. Mass spectrometry and data sets

Two biological samples are used in our study. The first one is from a
whole-cell lysate of Thermoanaerobacter tengcongensiswhich is digested
by trypsin and then analyzed on a LTQ-Orbitrap Velos mass spectrome-
ter. HCD (mass range 100–2000) is used for the generation of MS/MS
spectra. T. tengcongensis cells were cultured at four different tempera-
tures (55 °C, 65 °C, 75 °C and 80 °C) and a sample was generated at
each temperature, leading to four datasets (TTE-55, TTE-65, TTE-75
and TTE-80, each containing 12 RAW files). The numbers of MS/MS
spectra in these four datasets are 128,481, 113,531, 117,209 and
127,190, respectively. TTE-55 and TTE-65 are mainly used for the
detailed analysis of the algorithm precision in this paper.

The second one is from a whole-cell lysate of Caenorhabditis elegans
[52]. Two enzymes, Trypsin and Asp-N, are used separately to digest
proteins. Then the two digests are analyzed on a LTQ-Orbitrap XL
mass spectrometer using a 6-stepMulti-dimensional Protein Identifica-
tion Technology (MudPIT) [53]. In this experiment, the two most in-
tense precursor ions from each full scan were isolated to generate five
MS/MS spectra for each: low-mass HCD (mass range 50–2000), HCD
(mass range 100–2000), CID detected in LTQ, ETD detected in LTQ and
ETD detected in Orbitrap. Two HCD spectra from the same scan are
merged together for further analysis. Two datasets, 12,488 HCD spectra
from the trypsin digest and 11,288 HCD spectra from the Asp-N digest,
are named as WORM-TRYP and WORM-ASPN respectively.

3.2. Database search

The Alioth algorithm, as well as Mascot (version 2.2) and pFind
(version 2.6, in which KSDP scoring function is used [7]), was tested
on the datasets described above. MS/MS spectra were extracted using
an in-house tool of pFind Studio named pXtract. The database search
parameters are shown in Table S1. For the T. tengcongensis data, we
search against the original proteome database plus the six-frame trans-
lation database, which aimed at discovering novel genes [54,55]. For
each target database, two shuffled decoy databases are generated, one
for learning peptide occurrence probability and the other for FDR esti-
mation. In the whole workflow of Alioth, the protein database is split
into a few parts first and the total length of proteins in each part is no
more than 1,000,000. Then for each partial database, the fragment ion
index is constructed in memory and all of the MS/MS spectra to be
identified are searched against the index. No more than 30 peaks are
selected to generate queries. Up to 100 intermediate partial sequences
are kept for each spectrum to generate full-length candidate peptides.
We chose all of the modifications recorded in the Unimod database
and all possible substitutions between any two different amino acids.
After removing redundant items, a list containing 1362 modifications
and amino acid substitutions are generated for Alioth.

The result from our algorithmwas comparedwithMascot and pFind
in three search modes: regular, complex mode I, and complex mode II.
In the regular search mode, full enzyme specificity and a few common
modifications are specified, which is to simulate a routine proteomic
analysis. In complex mode I, peptides due to semi- and non-specific
digestion are first identified by Alioth+DB and then integrated into
the original database, so these sequences are included in the Mascot
and pFind searches when a fully specific digestion mode is applied. In
complex mode II, the nine (the maximum allowed number of variable
modifications in Mascot) most abundant modifications identified by
Alioth are specified as variable modifications, which is the same setting
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used in the restricted database search following Alioth search. For
Mascot, we use Mascot Percolator [56] to extract true positive identifi-
cations and calculate q-values in the restricted searching mode. We
did not show the comparison between Alioth and others in a real
semi- or non-specific digestion mode because the running time of
both Mascot and pFind was too long and the Mascot program finally
became unresponsive in this condition.

3.3. Analysis of performance on the T. tengcongensis data

Shown in Fig. 2 is the comparison ofMascot, pFind and Alioth search
results on the datasets TTE-55 and TTE-65. At 1% FDR, Alioth reported
94,099 PSMs from TTE-55, with a further increase to 98,283 PSMs
when Alioth is combined with a follow-up restricted database search
(Alioth+DB). This is 89.4% and 87.6% more than pFind (52,681) and
Mascot (53,197) in the regular searching mode, respectively (Fig. 2a).
On TTE-65, Alioth+DB also yielded the most identifications: 134.7%
more than pFind and 125.2% more than Mascot (Fig. 2b). The spectrum
interpretation ratio was ~41% using either Mascot or pFind, similar to
what is reported recently on HCD data from LTQ Orbitrap Velos [12].
In contrast, 77.7% spectra in TTE-55 and 62.5% spectra in TTE-65 can
be interpreted using Alioth+DB at the same 1% FDR cutoff, showing
that the algorithm is an effective approach to improving spectrum inter-
pretation rate.

To validate Alioth search results, we further compared them to the
research results of pFind and Mascot in two complex search modes
(Fig. 2c and d). Both pFind and Mascot identified many more PSMs in
complex search modes than in the regular search mode. In complex
search mode I, semi-specific peptides identified by Alioth-DB are
added to the protein database used by pFind and Mascot. In complex
searchmode II, the ninemost abundantmodifications are set as variable
modifications, based on the Alioth search results. The result of Mascot is
slightly higher than that of pFind in both complex search modes.
Alioth+DB still yielded ~10% and 3% more identifications on TTE-55
and TTE-65, respectively, compared to the Mascot result in complex
Fig. 2. Result comparison ofMascot, pFind and Alioth on the T. tengcongensis data. a) The numbe
and pFind in the regular search mode on the dataset of TTE-55. b) Same as a) but on the datase
well asMascot and pFind in the two complex searchmodes on the dataset of TTE-55. d) Same as
confidently identified by Alioth+DB, Mascot and pFind in the complex search mode II on the da
inconsistently. f) Same as e) but on the dataset of TTE-65.
search mode II. In addition, a vast majority of the reported PSMs by
Alioth+DB are supported by the search results of other search engines
(Fig. 2e and f). For example, 79.5% of the PSMs are identified from
TTE-55 by all three algorithms, and 83.3% of the Alioth results are sup-
ported by at least one other search engine.

We compared the proportion of fully-, semi- and non-specific pep-
tides between TTE-55 and TTE-65. As shown in Fig. S4a and b, semi-
and non-specific peptides accounted for 38.3% of the identified spectra
from TTE-65, more than double the percentage of semi- and non-
specific peptides (17.3%) in TTE-55. As such, the presence of many
more peptides from irregular digestion is likely the reason why the
spectrum interpretation ratio achieved by Alioth is a bit lower on TTE-
65 (62.5%) than on TTE-55 (77.7%). For Mascot and pFind, the peptides
from irregular digestion are assumed to be from fully specific digestions
and added to the original protein database. Thus, the PSM scores of
these peptides are not influenced by their digestion specificity. How-
ever, the scores of peptides from semi- and non-specific digestion are
penalized compared with the fully specific ones in Alioth. This is proba-
bly why the numbers of reported PSMs by pFind or Mascot in the com-
plex search modes are closer to those by Alioth and Alioth+DB on TTE-
65 than TTE-55. On the other hand, the modifications detected in these
two datasets are almost the same (Tables S2 and S3).

The result of Alioth is also comparedwith the other two unrestricted
database search algorithms, the error tolerant search mode of Mascot
and the blind search mode of InsPecT, which is shown in Fig. S3. On
both datasets, the number of the target PSMs reported by Alioth is
remarkably greater than the other two engines. Compared with the
result of Mascot, Alioth reported 7.0% and 29.5% more target PSMs at
1% FDR on TTE-55 and TTE-65, respectively. In addition, the result of
Mascot in the error tolerant mode is 3.4% and 23.4% less than that in
complex mode II on TTE-55 and TTE-65, respectively (shown in Fig. 2c
and d), which indicates that the huge searching space in the unrestricted
search contains much more peptide candidates and probably influences
the performance of Mascot. Therefore, it is important to consider more
features such as modifications and digestion forms, rather than the
r of correct PSMs as a function of FDR obtained by Alioth and Alioth+DB, aswell asMascot
t of TTE-65. c) The number of correct PSMs as a function of FDR obtained by Alioth+DB, as
c) but on the dataset of TTE-65. e) A Venn diagram that shows the consensus of the results
taset of TTE-55. The numbers in the parentheses indicate howmany results are identified
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quality of PSMs only, in result validation, especially for the unrestricted
database search.
3.4. Analysis of the performance of Alioth on the C. elegans data

The comparison of Mascot, pFind and Alioth results is shown in
Fig. 3. On the WORM-TRYP dataset, all of the algorithms can identify
more than 60% of the total spectra. Alioth+DB reported 9523 PSMs,
which is 12.6%more than pFind and 14.3%more thanMascot. The over-
all interpretation rate of the spectra is 76.3%. On the dataset of WORM-
ASPN, the spectrum interpretation ratio of either pFind (43.4%) or Mas-
cot (49.8%) ismuch reduced,while Alioth+DB still reported 7621 PSMs,
which is 67.4% of the total spectra. On the WORM-TRYP dataset, pFind
andMascot identified over 65% of the spectra even in the regular search
mode, closer to the Alioth and Alioth+DB results than on TTE-55 and
TTE-65. In the WORM-TRYP dataset, 96.2% of the identified spectra are
fully tryptic (Fig. S4c), and 76.1% of them are interpreted as peptides
without modifications. Therefore, even in the regular search mode,
most of the correct peptides are within the searching space. On the
other hand, although the digestion and modification types are both
unrestricted in Alioth, which increases the search space dramatically,
Alioth still shows better performance than pFind and Mascot.

Curiously, fewer PSMs are reported by pFind in the complex search
mode than pFind itself in the regular mode on both worm datasets
(Fig. 3a and b). This is opposite to what is observed on the TTE-55 and
TTE-65 datasets (compare Fig. 2a to c, and b to d). It may be partly
explained by the fact that more than 95% of the worm peptides show
perfect digestion specificity (Fig. S4c and d) and a very high percentage
of the reported PSMs, 76.1% fromWORM-TRYP and 84.8% fromWORM-
ASPN, are interpreted as unmodified peptides. So, although a few pep-
tides with specified modifications or digestion specificity are gained
using the complex searchmode, a great number of theoretically possible
but actually incorrect candidate sequences result in a net loss of PSMs at
the same FDR cutoff. On the contrary, Mascot reported a comparative
number of positive PSMs in the complex search mode because the
information of modifications is taken into accounted in the Mascot per-
colator algorithm. In Alioth, the calculation of peptide occurrence prob-
ability also implies the consideration of different forms of digestions, as
well as the different numbers and types ofmodifications. This is the rea-
sonwhy Alioth reported themost positive PSMs evenwhen searching a
huge space (i.e. arbitrary digestion forms, the Unimod database and all
possible amino acid substitutions are all considered simultaneously).
Fig. 3. Result comparison of Mascot, pFind and Alioth on the C. elegans data. a) The number of c
pFind in both the regular and complex searchmodes on the dataset ofWORM-TRYP. The comp
a) but on the dataset of WORM-ASPN.
Aside from the HCD spectra, we also acquired in the C. elegans
datasets high resolution ETD data, and normal resolution ETD and CID
data from the same precursors. Therefore, they can be used to validate
the reliability of the Alioth+DB search results on HCD. As shown in
Fig. 4, we compared the result of Alioth+DB with five other results:
the result of Mascot on the HCD data and the result of pFind on the
HCD, CID, ETD-LTQ and ETD-Orbitrap data. The consensus between
the Alioth result and five other result groups is shown in Fig. 4a and c.
As shown in Fig. 4a, 96.5% of the results can be validated by at least
one result group on theWORM-TRYP data. The q-values of the remain-
ing 3.5% target PSMs are distributed closer to zero than the q-values of
the decoy PSMs (Fig. 4b, compare 0 and 6). In addition, 41.9% of the pep-
tides in these target PSMs are also reported in the validated results (data
not shown). From the WORM-ASPN dataset, only 82.7% of the results
can be validated by at least one result group (Fig. 4c). However, as
shown in Fig. 4d, the distribution of the q-values of the remaining
17.3% PSMs not validated by other result groups is much closer to zero
than the decoy PSMs, just like the q-value distributions of the validated
PSMs (Fig. 4d). These results suggest that most of these PSMs have
much higher scores than decoy PSMs and are likely reliable.
3.5. Comparison of running time

Table 1 shows the running time of Mascot, InsPecT, pFind and Alioth
in different search modes. Both pFind and Mascot in the regular search
mode are faster than Alioth and Alioth+DB. In the complex search
mode, pFind is 5–10 times faster than Mascot and still 3–4 times faster
than Alioth+DB. We would like to point out that the search space
explored by Alioth+DB is much larger than that by Mascot or pFind
even in complex searching mode II. Non-specific digestion results in
~100 times more peptides, while the number of modifications and
mutations considered in our algorithm is ~150 times more than that
considered in pFind or Mascot. Under such condition, Alioth+DB is at
least 10% faster on the worm datasets compared to Mascot in complex
search mode II and even three times as fast as Mascot on the TTE
datasets. If the real semi-specific digestion mode and nine most abun-
dant modifications are specified, both pFind and Mascot become signif-
icantly slow and the reported target PSMs at 1% FDR are less than in
complexmode II. In addition, the running time of our algorithm is com-
pared with two unrestricted search algorithms: the blind search mode
of InsPecT and the error tolerant searchmodeofMascot. Up to onemod-
ification site is allowed per peptide in all of these algorithms. As shown
orrect PSMs as a function of FDR obtained by Alioth and Alioth+DB, as well as Mascot and
lex searchmode is the same as the complex search mode II mentioned in Fig. 2. b) Same as



Fig. 4. Validation of the result of Alioth+DB on the C. elegans data. Five sets of results are used for validation: the search result of pFind on the HCD-FTMS, CID-ITMS, ETD-ITMS and ETD-
FTMS data, aswell as the search result ofMascot on theHCD-FTMSdata. Then for each PSM identified by Alioth+DB, it is counted howmany times this identification is supported by other
result groups, that is, whether the same peptide is identified by other search engines from the same spectrum or its cognate spectra from the same precursor. a) The proportions of results
with different levels of reliability. The numbers in the parentheses indicate howmany result groups support the PSMs. For example, 23.3% of the total PSMs are supported by all of the five
result sets. b) Box plots that show the distributions of q-values from different sections corresponding to a). The rightmost box plot shows the distribution of q-value from the decoy PSMs.
c) Same as a) but on the dataset of WORM-ASPN. d) Same as b) but on the dataset of WORM-ASPN.
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in Table 1, the running time of Alioth is about 5 and 10 times faster than
the other two algorithms.
4. Discussion

In this paper, we describe a novel unrestricted database search algo-
rithm, Alioth, which features a fragment ion indexing technique and an
efficient retrieval approach to speed up database search with arbitrary
forms of enzymatic digestion and thousands of modification types and
mutations. In addition, an iterative strategy is used to learn the occur-
rence probability of candidate peptides. Alioth can be combined with a
regular database search, which further improved the overall perfor-
mance. Comparedwith a few other restricted and unrestricted database
Table 1
Comparison of the running time among the database search algorithms in different search
modes (in minutes)a.

Running time (in minutes)

WORM-TRYP
(12,488)b

WORM-ASPN
(11,288)

TTE
(486,411)

Alioth 36 33 643
Alioth+DB 66 65 1449
pFind-regular 5 5 136
pFind-complex-II 17 16 440
Mascot-regular 7 5 148
Mascot-complex-II 74 86 4460
InsPecT (blind search) – – 6540
Mascot (error tolerant) – – 3552

a In the experiment reported in this the paper, we used a Dell PC, which has an Intel
Core i5 CPU @ 2.90 GHz and 4 GB memory.

b The number in the parentheses indicates how many MS/MS spectra are contained in
the corresponding dataset.
search tools, Alioth performs favorably on multiple test datasets con-
taining ~500,000 MS/MS spectra in total.

It should be noted that Alioth is not a blind database search algo-
rithm but rather based on what is recorded in the Unimod database,
similar to PeaksPTM [31]. However, only a slightmodification is needed
for Alioth to fit the demand of blind search: in the step of candidate gen-
eration, the mass shifts in Unimod, as well as unknownmass shifts, can
all be taken into account as potential modifications. However, the time
cost will surely increase. Actually, the modifications in Unimod are
sufficient for proteomic analysis inmost cases. On the other hand, irreg-
ular digestion, especially the semi-specific digestion, is not uncommon
in sample preparation and can lead to a sharp increase of search
space. However, specifying digestion or modification types is some-
times risky because such information is unknown before analyzing the
MS/MS data. In this case, Alioth can provide the ability to search a
much larger space and, more importantly, view the MS/MS data from
a global perspective and gather sample specific information such as
digestion and modifications.

We have also tested the algorithm with normal mass resolution
MS/MS data, but there is no obvious improvement compared with the
traditional database search engines. The main reason is that because
of reduced precision and accuracy, a peak (query) in a normal resolu-
tion MS/MS spectrum retrieves too many theoretical fragment ions.
Therefore, it is much more difficult to extract the correct peptide for
each spectrum. Besides, the running time and memory demand in-
crease sharply. However, in high mass accuracy and high resolution
MS/MS data, the correct peptides are easier to be distinguished even
in unrestricted database search. Because high resolution and high
mass accuracy mass spectrometers are widely used nowadays, we be-
lieve that fast, accurate, and unrestricted database search will be
frequently used or even become routine in future high-throughput
proteome analyses.
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Now Alioth can be downloaded from http://pfind.ict.ac.cn/software/
Alioth/index.html.
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