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Samples for 2-dimensional projection of kinetic trajectories are shown in Figure 7. The coil
states are loosely gathered while the native states can form a black cluster with extreme high
density in 2-dimensional projection plane.
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Kinetic trajectories are projected onto xx and yy variables in Figure 7. This figure shows two populated
states. One corresponds to loosely gathered coil states while the other is the native state with a high
density.
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The accuracy of the model structures is given by TM-score. In case of a perfect match to
experimental structure, TM-score would be 1.
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The accuracy of the model structures is measured by TM-score, which is equal to 1 if there is
a perfect match to the experimental structure.
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The smallest URFs (URFAGL), a 207-nucleotide (nt) reading frame overlapping out of phase the
NH2-terminal portion of the adenosinetrip hosphatase (ATPase) subinit 6 gene has been identified as the
animal equivalent of the recently discovered yeast H+-ATPase subunit 8 gene.
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The smallest of the URFs is URFABL, a 207-nucleotide (nt) reading frame overlapping out of phase the
NH2-terminal portion of the adenosinetriphosphatase (ATPase) subinit 6 Gene; it has been identified as
the animal equivalent of the recently discovered yeast H+-ATPase subunit 8 gene.
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URFAGL has been identified as the animal equivalent of the recently discovered yeast H+-ATPase
subunit 8 gene.

Recently discovered yeast H+-ATPase subunit 8 gene has a corresponding animal equivalent
gene URFAG6L.
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The enthalpy of hydrogen bond formation between the nucleoside bases 2-deoxyguanosine (dG) and
2-deoxycytidine (dC) has been determined by direct measurement.
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We have directly measured the enthalpy of hydrogen bond formation between the nucleoside bases
2-deoxyguanosine (dG) and 2-deoxycytidine (dC).
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The enthalpy of hydrogen bond formation between the nucleoside bases 2-deoxyguanosine
(dG) and 2-deoxycytidine (dC) has been determined by direct measurement. dG and dC were
derivatized at the 5 and 3 hydroxyls with triisopropylsilyl groups to obtain solubility of the
nucleosides in non-aqueous solvents and to prevent the ribose hydroxyls from forming hydrogen
bonds. From isoperibolic titration measurements, the enthalpy of dC:dG base pair formation is
-6.650.32 kcal/mol.
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We have directly measured the enthalpy of hydrogen bond formation between the nucleoside bases
2-deoxyguanosine (dG) and 2-deoxycytidine (dC). dG and dC were derivatized at the 5 and 3 hydroxyls with
triisopropylsilyl groups; these groups serve both to solubilize the nucleosides in non-aqueous solvents and
to prevent the ribose hydroxyls from forming hydrogen bonds. The enthalpy of dC:dG base pair formation is
-6.650.32 kcal/mol according to isoperibolic titration measurements,
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Large earthquakes along a given fault segment do not occur at random intervals because it
takes time to accumulate the strain energy for the rupture. The rates at which tectonic plates
move and accumulate strain at their boundaries are approximately uniform. Therefore, in first
approximation, one may expect that large ruptures of the same fault segment will occur at
approximately constant time intervals. If subsequent main shocks have different amounts of slip
across the fault, then the recurrence time may vary, and the basic idea of periodic main shocks
must be modified.
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Large earthquakes along a given fault segment do not occur at random intervals because it
takes time to accumulate the strain energy for the rupture. The rates of strain accumulation at the
boundaries of tectonic plates are approximately uniform. Therefore, nearly constant time intervals
(at first approximation) would be expected between large ruptures of the same fault segment.
[However?], the recurrence time may vary; the basic idea of periodic main shocks may need to be
modified if subsequent main shocks have different amounts of slip across the fault.
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Table 3:

Benchmark | SALIGN Lindahl PROSPECTOR 3 LiveBench 8
Method Alignment | MaxSub MaxSub MaxSub
SPARKS 53.1% 325.9 529.0 38.3
SPARKS2 54.9% 341.0 591.0 40.7
This work 56.6% 349.2 601.9 42.2
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Fig. 3. Alignment accuracies (measured by SPS) as a function of average
sequence identty given by methods SPEM. PrebCons, MUSCLE 6.0, T-
Coffee and ClustalW, shown as labeled. Each peint is represented by the
lower bound of sequence identity at each bin.
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Assessing secondary structure assignments of protein structures by using pairwise
sequence-alignment benchmarks

The secondary structure of a protein refers to the local conformation of its polypeptide
backbone. Knowing secondary structures of proteins is essential for their structure classification?,
understanding folding dynamics and mechanisms®®, and discovering conserved
structural/functional motifs®’. Secondary structure information is also useful for sequence and
multiple sequence alignment®®, structure alignment'®'', and sequence to structure alignment (or
threading)'?'. As a result, predicting secondary structures from protein sequences continues to
be an active field of research'®'®fifty six years after Pauling and Corey'®® first predicted that the
most common regular patterns of protein backbones are the a-helix and the p-sheet. Prediction

and application of protein secondary structures rely on prior assignment of the secondary-structure
elements from a given protein structure by human or computational methods.

Many computational methods have been developed to automate the assignment of
secondary structures. Examples are DSSP,STRIDE, DEFINE, P-SEA, KAKSI,P-CURVE,
XTLSSTR, SECSTR, SEGNO, and VoTAP. These methods are based on either the
hydrogen-bond pattern, geometric features, expert knowledge or their combinations. However,
they often disagree on their assignments. For example, disagreement among DSSP, P-CURVE,
and DEFINE can be as large as 25%. More beta sheet is assigned by XTLSSTR and more pi-helix
by SECSTR than by DSSP. The discrepancy among different methods is caused by non-ideal
configurations of helices and sheets. As a result, defining the boundaries between helix, sheet,
and coil is problematical and a significant source of discrepancies between different methods.

Inconsistent assignment of secondary structures by different methods highlights the
need for a criterion or a benchmark of “standard” assignments that could be used to assess and
compare assignment methods. One possibility is to use the secondary structures assigned by the
authors who solved the protein structures. STRIDE, in fact, has been optimized to achieve the
highest agreement with the authors’ annotations. However, it is not clear what is the criterion used
for manual or automatic assignment of secondary structures by different authors. Another
possibility is to treat the consensus prediction by several methods as the gold standard. However,
there is no obvious reason why each method should weight equally in assigning secondary
structures and which method should be used in consensus. Other used criteria include
helix-capping propensity, the deviation from ideal helical and sheet configurations, and structural
accuracy produced by sequence-to-structure alignment guided by secondary structure
assignment.

In this paper, we propose to use sequence-alignment benchmarks for assessing
secondary structure assignments. These benchmarks are produced by 3D-structure alignment of
structurally homologous proteins. Instead of assessing the accuracy of secondary-structure
assignment directly, which is not yet feasible, we compare the two assignments of secondary
structures in structurally aligned positions. We assume that the best method should assign the
same secondary-structure element to the highest fraction of structurally aligned positions.
Certainly, structurally aligned positions do not always have the same secondary structures.
Moreover, different structure-alignment methods do not always produce the same result.
Nevertheless, this criterion provides a mean to locate a secondary-structure assignment method
that is most consistent with tertiary structure alignment. We suggest that this approach provides an
objective evaluation of secondary structure assignment methods.
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One question about the complex homopolymer phase diagram presented here is whether it is
caused by the discontinuous feature of the square-well potential. We cannot give a direct answer
because the DMD simulation is required to obtain well-converged results for the thermodynamics.
However, the critical phenomena predicted for a fluid composed of particles interacting with a
square-well potential are as realistic as those predicted for a fluid composed of particles
interacting with a LJ potential. Also an analogous complex phase diagram is found in simulations
of LJ clusters. The present results for square-well homopolymers may well be found in more
realistic homopolymer models and even in real polymers.
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How to make an objective assignment of secondary structures based on a protein structure is an
unsolved problem. Defining the boundaries between helix, sheet, and coil structures is arbitrary,
and commonly accepted standard assignments do not exist. Here, we propose a criterion that
assesses secondary-structure assignment based on the similarity of the secondary structures
assigned to structurally aligned residues in sequence-alignment benchmarks. This criterion is
used to rank six secondary-structure assignment methods: STRIDE, DSSP, SECSTR, KAKSI,
P-SEA, and SEGNO with three established sequence-alignment benchmarks (PREFAB, SABmark
and SALIGN). STRIDE and KAKSI achieve comparable success rates in assigning the same
secondary structure elements to structurally aligned residues in the three benchmarks. Their
success rates are between 1-4% higher than those of the other four methods. The consensus of
STRIDE, KAKSI, SECSTR, and P-SEA, called SKSP, improves assignments over the best single
method in each benchmark by an additional 1%. These results support the usefulness of the
sequence alignment benchmarks as the benchmarks for secondary structure assignment.
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